NASA-CR-192798

]
—————————

JPL Publication 92-12

Conjunctive Programming:

An Interactive Approach to
Software System Synthesis

Robert C. Tausworthe

r 7 —
| (NASA-CR-192798) CONJUNCTIVE N93-22701

PROGRAMMING: AN INTERACTIVE
APPROACH TO SOFTWARE SYSTEM

- ; SYNTHESIS (JPL) 136 p Unclas
! G3/61 0154764
i
:L

<——------llIllllllllllllllllllllllll‘

August 1, 1992

NASA

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL Publication 92-12

Conjunctive Programming:

An Interactive Approach to
Software System Synthesis

Robert C. Tausworthe

August 1, 1992

NASAN

National Aeronautics and
Space Administration

Jet Propuision Laboratory
Caiifornia Institute of Technology
Pasadena, California

i ' 92-12

The research described in this publication was carried out by the Jet Propul-
sion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not constitute or im-
ply its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

Clipper is a trademark of Nantucket Corporation.

IBM is a trademark of International Business Machines, Inc.

IATgX is a trademark of Addison-Wesley Publishing Company, Inc.
Microsoft and MS-DOS are trademarks of Microsoft Corporation.
PostScript is a trademark of Adobe Systems, Inc.

TgX and Ap¢S-TEX are trademarks of the American Mathematical Society.

Ventura Publisher is a trademark of Ventura Software, Inc.

Copyright 1992 California Institute of Technology. All rights reserved. U. S.
Government sponsorship under NASA Contract NAS7-918 acknowledged.

92-12

Abstract

This report introduces a technique of software documentation
called conjunctive programming and discusses its role in the devel-
opment and maintenance of software systems. The report also de-
scribes the Congoin tool, an adjunct to assist practitioners. Aimed at
supporting software reuse while conforming with conventional devel-
opment practices, conjunctive programming is defined as the extrac-
tion, integration, and embellishment of pertinent information ob-
tained directly from an existing database of software artifacts, such
as specifications, source code, configuration data, link-edit scripts,
utility files, and other relevant information, into a product that
achieves desired levels of detail, content, and production quality.
Conjunctive programs typically include automatically generated ta-
bles of contents, indexes, cross references, bibliographic citations, ta-
bles, and figures (including graphics and illustrations). This report
presents an example of conjunctive programming by documenting
the use and implementation of the Conjoin program.

il

iv 92-12

Acknowledgements
The author would like to acknowledge and thank Brian Beckman,
Thomas Fouser, and Karen Owens for their encouragement, review,
and suggestions in the writing of this report, and Ellen Reinig and

Barbara Amago for their expertise in editing and preparing the ma-
terial for publication.

92-12

Contents

1 INTRODUCTION
1.1 Documentation Problems
12 Document Markupo
1.3 Literate Programming - - -« oo a e

2 CONJUNCTIVE PROGRAMMING
21 The Concept o v o i i vt i
2.2 Life Cycle Considerations
2.3 The Confoin Program
2.4 Impacts on Method and Expression
25 Goals . . . e e e e e e
2.6 Relation to Literate Programming

3 USING (onpoin
31 TheSource File(s)« ...
3.2 Selective Inclusion of Text Files: %access
3.3 Setting the Context Separator: %break
3.4 Setting the Alignment Column: %column
3.5 Specifying the String Match Count Signal: %count
3.6 Conversion of Non-Compilable Characters: %garbage
3.7 Setting File Search Paths: %path
3.8 Setting the Environment: %prefix and %postfix
3.9 Defining the Access Selection Separator: %range
3.10 Displaying the Coxfoin Directives: %show
3.11 Displaying File Sizes: %size
3.12 Altering the TAB Width: %tabs

4 INSTALLING AND RUNNING (oxfoin
4.1 Configurationo e
4.2 Installation i i
43 Running Comfoino

5 FURTHER CONSIDERATIONS
5.1 Document Organization oo
5.2 Entity Reference Linkages
5.3 Retro-Engineering«

6 FUTURE USAGE ENHANCEMENTS

vi 92-12

7 INTERNAL OPERATIONS

7.1 A Word on Programming Style
7.2 Program Preamble and ANSI Header Files.
7.3 Definitions, Defaults, and Macros

73.1 Symonyms e

7.3.2 Manifest Constants "

733 Directives

7.3.4 Default Parameters

735 MacroFunction.
7.4 Function Prototypes for the TOP-C Library
7.5 Local Data Structures e
76 Themain() Program. PR
7.7 The initialization() Function
7.8 The command_line() Function
7.9 The announce() Function
7.10 The error_message() Function
7.11 The usage() Function
7.12 The file_defaults() Function
7.13 The open_io_files() Function
7.14 The file_open() Function
7.15 The timestamp() Function
7.16 The right_£i11() Function
7.17 The ConJoin_files() Function
7.18 The directive() Function
7.19 The strext() Function
7.20 The access() Function
7.21 The match_parameters{) Function
7.22 The access_condition() Function
7.23 The open_access() Function
7.24 The scan_to_bgn_match() Function
7.25 The copy_to_end_match() Function
7.26 The tgetstr() Function.
7.27 The putline() Function.

8 TOP-C LIBRARY FUNCTIONS
8.1 The stratrim() Function
8.2 The strdup() Function
8.3 Thestrtnb() Function«
8.4 The strinsert() Function
8.5 The strlwr() Function P e e e
8.6 The strnset() Function. e e e e
8.7 The strtcpy() Function.
8.8 The strtrim() Function

»
111 A o WA 11

92-12

9 MAINTAINING THE (Cogfoin PROGRAM

10 ERROR MESSAGES

Appendices

A (Congjoin PROGRAM LISTING

B (Copfoin CONSTRUCTION

B.1 The Master Document File
B.2 The Program Compilation Seript
B.3 The Program Compilation MAKE File
B.4 The Document Construction Seript
B.5 The Usage Message MAKE File
B.6 The Document MAKE File.

C (ogpin FUNCTIONAL STRUCTURE

C.1 Call Tree o o e e e e e e e e e e e e
C.2 Reference List i i i e e e e e

D REFERENCES

List of Figures

1 TgX-based Conjunctive Programming Information Flow

vii

95

97

99

117
117
120
121
122
123
124

127
127
130

133

e b A b i

92-12 1

1 INTRODUCTION

1.1 Documentation Problems

One of the traditional problems with maintaining and reusing computer pro-
grams is understanding—even by the authors, after a period of time has elapsed.
Another is consistency among the software artifacts (program and library code,
documents, linkage-edit files, databases, etc.) as time progresses and as adap-
tations evolve within multiple platforms.

Each programmer has a particular individual manner of writing programs
that includes organization and composition, choice of algorithms, method of
indentation, density of comments, naming of variables, extent of information
hiding, application of modular packaging, and form of expression. In addition,
the visual appearance, including typography and graphics, may vary according
to the programmer’s personal style. It remains a fact that a program written
by someone else may be very difficult to understand, even when produced by
acceptable development practices.

Some advocate “self-documenting code,” or intensely annotated programs
that contain all the information that the programmers believe is necessary.
Making a program entirely readable by itself is, in some sense, analogous to
making a circuit board or computer chip layout readable by itself: It is a dif-
ficult process usually producing unsatisfactory results that are not appropriate
for the medium. Rather, readability gains where explanation, clarity, struc-
ture, visualization, layout, use of color, and rendering can be separately and
adequately treated.

In the past, software artifacts were viewed by humans as documents. In the
automated world of today, however, the concept of what a document is has un-
dergone a vast change. The computer and communications industries have made
enormous progress in giving humans immediate access to huge stores of informa-
tion. The majority of this information, captured in printed material, libraries,
and computer files, is ultimately for human perception. Some information is
fully formatted for immediate and direct perception as printed matter. Some
is fully formatted, ready to be rendered into perceivable form (e.g., PostScript
files, digital video, and sound recordings). The rest is stored unformatted, but
in such a way that it is possible to format, process, or otherwise render it for
direct perception (e.g., in databases and in multimedia hypertext documents).
In the future, expansion of the documentation concept to include an even wider
context of perception will, no doubt lead to new needs for people to locate, per-
ceive, and interactively understand not only software artifacts, but large bases
of information of arbitrary types as well.

Software documentation problems have sprung from a number of diverse
sources, among which are the lack of accepted, effective industry-wide stan-
dards; the conspicuous absence of software documentation courses in university
curricula; the inadequate training within corporate development programs; the

9 ' 92-12

emphasis within existing standards on form, rather than on substance and suf-
ficiency; the uncertainty in, ignorance of, and insensitivity of developers to
the needs of readers; the inability to provide the proper level and content of
material needed by users; the prohibitively high cost of providing highly read-
able, textbook-quality documentation; the pressure by managers and customers
to “get the code working”; the deficient allocations of resources for providing
proper documentation; the shortfall of practical methods and friendly, inte-
grated tools for doing a good documentation job; and the lack of cost-effective
means for combating the continuing entropic divergence in consistency among
artifacts.

In a recent visit to the library of the JPL Software Resource Center, an
organization formed to guide the improvement of the Laboratory’s software en-
gineering methods and practices, I found only one text completely devoted to
documenting a program [1], and one other on diagrammatic methods applied
to programming [3]. The IATgX [4] reference manual was there, but that text
tells how to compile a document, not how to document a program. Some of the
library’s texts devoted space to defining the documentation problem, justifying
why projects should improve their documentation and giving examples of doc-
ument outlines, code annotation, review guidelines, and subjective acceptance
criteria. However, not one of the texts offered a real, codified, practical and
comprehensive approach to program understanding. Such works may exist, but
at JPL their teachings are not part of the culture.

Most of us in the software industry have taken high school and university
courses in composition. We have at least been exposed to the art of literary
discourse, expression, style, and organization. If we have forgotten, or otherwise
need to (re)learn how to communicate in writing, there are books, reference
works, and computerized tools readily available to help us at all levels of ability.
It would therefore seem more natural for us to be able to explain something in
our natural language than in a syntactically more restricted, awkward computer
language form. But a formula for producing software understandablhty is a tall

‘order. When applied by the practitioner, it must be capable of causing objects
to be created that will communicate the intended information to the intended
readers of presupposed intelligence levels, areas of skill, and cognitive styles [2].
This formula may not exist.

In my experience, the best software documentation exists in journal articles
and in textbooks on algorithms. In each of these understandability has been
scrutinized by referees and editors. Unreadable works are rejected before their
release to the public, and works of inferior quality that leak through the review
process are generally short-lived. Those that survive serve as examples of the
high quality that can be attained. -

In one not atypical work [5], I noted that the ratio of space devoted to
accompanying narrative, ‘mathematical formulae, derivation, figures, tables, and
other explanatory material exceeded the space devoted to displaying the code

by a factor ranging from about two to ten! If this one sample is anywhere near

[0 M

92-12 3

to being a valid indicator, and if textbook quality is what is really required for
reader understanding, then industry must expect its software projects to require
a far greater proportion of time and resources on documentation than any other
development pursuit. Indeed, most projects of any size will not be able to afford
textbook-quality documentation.

Sadly, I do not have a general approach to solving the overall documenta-
tion problem either. Far more resources than I have, and wiser faculties than
mine have attacked the problem vigorously for many years, with only meager
success. This report does, however, offer a concept, a practical approach, and
a simple tool to demonstrate a practice that, I hope, will help to increase pro-
grammer sensitivity to the needs of readers, assist in producing good documents
in normal documentation time, permit separate development and documenta-
tion efforts to take place, and promote consistency among software artifacts. 1
believe that any level of content a project may decide upon for a document, from
copious detail in meticulous, multi-linked, multicolored hypermedia, to no doc-
umentation at all, can be accommodated within this concept. Whatever form
of documentation is chosen, from textbook or journal rigor, to Department of
Defense standards, to undisciplined personal quirks, can be created. As long as
the sources of software artifacts are accessible within the system environment,
the documentation process should be able to apply the technique presented in
this report.

1.2 Document Markup

One concept central to the approach of this report is that ancillary information
may be benignly inserted into software artifacts so as either to enhance the
primary information content or extend the utility of those artifacts. Markup is
a type of information that is introduced into data to convey special interpre-
tations. It is so called because of its resemblance to the markings that editors
make in drafts of paper documentation. Markup makes use of “start tags” and
“end tags” that respectively precede and follow each logical portion of the data.
Tags are specially formed so that the markup can be recognized and processed
separately from data that surround it.
Markup tags fall into four categories:

(1) Descriptive markup, which defines the structure and appearance of a doc-
ument. These tags identify such items as sections, subsections, citations,
references, fonts, and so on.

(2) Entity references, which are requests for objects to be moved into the
document at (or near) the point of reference. The objects themselves may
reside elsewhere within the medium containing the reference, or externally.

(3) Markup declarations, which are statements that control how the markup
is interpreted. These can be used to define objects directly and also to

4 92-12

create additional markup descriptions.

(4) Processing instructions, which are instructions to the processing system,
in its own language, to take specific actions. Unlike the three other types
of markup, this markup is system-dependent, and perhaps application-
dependent, as well.

Markup tags do not need to be physically embedded within the information
medium itself. They can be maintained in a separate database that defines the
type, location, and other particulars of each mark.

American industry and the international community have developed the
Standard Generalized Markup Language (SGML) [6], and are in the draft stage
of developing HyTime, a Hypermedia/Time-based document-structuring lan-
guage [7] built on SGML. These standards offer ways to make “information
about information” mteroperable An mtroductory article on HyTlme appears

In a markup system, when a document type (such as a book, an artxcle or
a report) is defined, a distinction is made between the mformatxon to be pre-
sented and the instructions for rendering that information for perception. This
is a fairly straightforward process for many traditional types of documents,
where information consists of printable words, punctuation, and simple graph-
ics. Formatting a document follows a style guide, or specification that associates
rendering instructions with generic markup tags. All that is necessary to refor-
mat an entire document is to apply a different style guide.

Markup tagging offers another, even more significant, benefit: collections
of tagged objects may be queried like databases. By using special tags for
interlinking objects, information products can access the contents of other in-
formation products by reference. The use of automated query data involving
actual objects rather than manually generated surrogates of those data, can
help immunize the produced documents against obsolescence. Moreover, the in-
formation in tagged objects remains available for other uses totally unforeseen
when the objects and tags were created.

Markup tagging for document rendering and style must be recognized by the
target document-processing system. Tagging for location of information must be
recognized by the agents that establish and utilize linkages among objects. The
placement and maintenance of linkage tags are the responsibilities of authors
and owners of the information objects queried.

1.3 Literate Programming

Donald E. Knuth of Stanford University released a markup style utility in 1983
named WEB [11] as part of a project that also developed the TEX markup system

and document compiler [12]. The use of WEB by Knuth [13] and others [14, 15, 16,
17], led to the literate programming paradigm, a concept in which programs are
treated as works of literature. The idea behind this approach to programming

92-12 5

is that software (code, documentation, and associated data) can be made so
readable and interesting that it may actually be read for entertainment. If an
author has craft and style, and if a program does something interesting, or does
something in an interesting way, then the presentation to the reader can be
enjoyable, as well as enlightening.

Literate programs have an orientation and expression that differs from other
programs. The literate program is a special mixture of expository text that tells
the reader what the program does, how it does it, and why it does it that way.
Not by accident, it also tells the compiler how to build the program. Thus,
the program’s documentation, code, and data are integrated and in one place,
possibly in a single computer file. They are created and maintained together as
a unit.

Unlike any other procedural programming language, WEB programmers are
not required to present the pieces of a program in any specific order. Rather,
they can be arranged in a natural order, which Knuth refers to as stream of
consciousness, and they can be organized into segments that accommodate the
needs of structured programming. Rather than developing “self-documenting
code,” literate programmers create “self-coding documents.”

WEB comprises two program utilities, WEAVE and TANGLE, which process the
literate source files and create, respectively, a document file to be processed by
TEX and a code file to be processed by a Pascal (or other) compiler. The details
of WEB and literate programming are described in Wayne Sewell’s well-written
book, Weaving a Program: Literate Programming in WEB [18].

92-12 7

2 CONJUNCTIVE PROGRAMMING

This section describes an alternate to literate programming, a concept that I
call conjunctive programming.! Because it is simple, easy to learn, flexible, and
compatible with almost any documentation regimen, many may find it to be an
appealing and useful adjunct to literate programming.

The idea is not new. Like modularity and object-oriented methodology,
many may realize they have been doing something like it for years without
knowing that was what it was. While this report primarily treats generation
of conventional text-and-graphics types of documents, extensions to multimedia
and hypertext forms will be readily recognized. A hypermedia example of a
similar concept, called Intermedia appears in [10].

2.1 The Concept

In conjunctive programming, an object is any form of electronically accessible
information. A software system is comprised of the set of objects that define,
build, configure, and operate the system. These objects, therefore, contain
much (but rarely all) of the information needed to understand the system. This
information is current and accurate, because it is the real McCoy, not an artificial
surrogate maintained separately. It is a resource that can be used and reused
by excerpting appropriate portions into desired external documented forms.

The verb conjoin means [19] to unify and integrate separate entities together
for a common purpose. The adjective form conjunctive means connected,
conjoined, and composed of, or functioning as, a combination. Conjunctive
programming, then, is the assembling together of information excerpted from
real software artifacts, such as programs, items in accessible libraries, version-
specific configuration data, link-edit code, scripts, other documents, outputs
from other processors (e.g., structure analyzers, pseudocode systems, statistical
packages, etc.), and all other information required to create a document with
designated levels of detail, content, and production quality.

Producing a conjunctive program is somewhat similar to the “cut-and-paste”
process one exercises when writing a document using a text editor or word
processor on various sources of online data. It differs in that after an excerpt to
be reused has been located, it is not pasted directly into the document at that
time. Rather, a window to this excerpt is pasted into the conjunctive document
instead. The window is alive; if the excerpt changes, the view of it in the window
changes also. When the time to produce the target document finally arrives,
a software tool scans the source document, taking snapshots through all the
windows, replicating their current views.

The product of this process may be likened to a collage, in that it is an artis-
tic composition made of various diverse fragments of heterogeneous materials

1Warning: Conjunctive literitis is a mental condition thought to be kinked to the overzeal-
ous devotion to this practice.

PREGEDING PAGE BLANK NOT FILMED

8 92-12

assembled (glued) together. However, this analogy cannot be further extended
to describe the conjunctive programming process, for there is no listed adjective
form describing the collage-making activity. Coined terms such as “collage-
nous,” “collagenative,” and “collageneric,” seem awkward, contrived, and inad-
equate. It is true that “collage” can be used as a transitive verb, but it sounds
awkward to describe conjunctive programming as a process of “collaging” bits
and pieces of existing information together.

Conjunctive programming is a generic concept, specific instances of which
are defined by the environment of automated utilities that provide for acquiring,
editing, interrelating, integrating, navigating, and finally rendering the informa-
tion products. In concept, conjunctive programming does not require markup
tagging for these functions, but as a practical matter, it offers a great conve-
nience. Intermedia is an example of a highly integrated conjunctive program-
ming énvironment in which the actual linkage mechanisms are largely hidden
from user view. The degree to which conjunctive mechanisms are invisible within
a programming environment that capitalizes on the benefits they provide attests
the level of sophistication and utility of the environment. o

But the use of conjunctive programming does not have to be restricted only
to highly integrated, grandiose environments. Rather, as illustrated in this
report, it can be applied productively even in less sophisticated, relatively het-
erogeneous environments. Processors like TEX and its dialects provide a sig-

nificant portion of the mechanical advantage needed, permitting people with
ordinary text editors to produce high-quality, typeset documents. LTEX and
AMS-TEX are powerful style adjuncts of TEX that help create and render ti-
tles, abstracts, tables of contents, numbered sections, footnotes, tables, figures,
indexes, cross-references, bibliographies, and citations. With TgX and BTpX
serving as its basis, an effective conjunctive programming environment addi-
tionally only requires a simple capability for recognizing and transcribing entity
references among software artifacts. Existing development tools, such as file
analyzers, type font managers, special formatters, program tree plotters, cross-
reference generators, spelling checkers, thesauruses, and MAKE? programs with
dependency files, can also augment the environment.

Conjunctive programming in TEX can produce the same superior document
quality as produced by literate programming in WEB. A TgX-based conjunctive
programming environment and information flow are illustrated in Figure 1.

The conjunctive programming approach to software development is differ-
ently oriented than that of literate programming, even though one hopes that
conjunctive programs can be equally literary in their final products. Conjunc-
tive programs, like literate programs, are displayed as interspersed narrative,
code, and data, printed in typeset quality. Actual source code, configuration
data, link and library directives, MAKE files, and the like, are all sewn together

ZMAKE is a utility {from UNIX) for automated regeneration of artifacts that are dependent
on other artifacts, which may change from time to time.

92-12 9

Source
.Cin Congoin

File(s)

) N

N
e

Data - _,1 Compile

File(s) and Link TEX

|

AEE—
N

Pr?gx'am Program(s) Document(s)
File(s)

— I

Figure 1: TgX-based Conjunctive Programming Information Flow.

into a format not unlike that of literate programs. The difference is that con-
junctive programming presumes that the code, data, documentation, and other
artifacts are maintained in separate, conventional forms that are then merged
into the integrated final form seen by the reader.

The practice of conjunctive programming may be pursued at different levels:
art, craft, discipline, or mere application. The art of conjunctive programming
exhibits conspicuous ingenuity and creative imagination, as may be manifested
by an engaging manner of description, innovative articulation, clever insights
and revelations, and curious mysteries for the reader to ponder and solve. Craft
is evidenced by technical accuracy, rigor, and expert workmanship. Conjunctive
programming discipline is the observance of orderly, sound, and systematic pro-
cesses which conform to recognized sets of rules, standards, or guidelines. The
mere practice of conjunctive programming does not, in itself, attest the level of
talent and skill that is at work.

Conjunctive programs contain linkages into real-world objects that may be
subject to a form of entropic degradation caused by evolutionary changes in the
system. As a practical matter, it is impossible either to prevent or counter this
degradation in a timely fashion without the cooperation of the individuals re-
sponsible for each linked-to object, or without elaborate automated linkage man-
agement, or both. Both require the use of markup standards, automatic recog-

10 ' 92-12

nition of changes, and establishment of communications and coordinated actions
among the individuals and artifacts involved. The integrated Intermedia sys-
tem for maintenance of linkage information in hypermedia documentation is
discussed in [10].

Documents may suffer from incompleteness, inconsistenty, noncurrency, and
asynchrony, if improperly written or maintained. Whether a program descrip-
tion is complete is perhaps more subjective in conjunctive programs than in
literate programs, because only the code segments deemed of interest may have
been abstracted into a conjunctive document, whereas the entire program must
appear in the literate program. On the other hand, conjunctive programs can
also be complete; they can also produce additional reports and papers about
selected algorithms, data structures, and the more essential aspects of the pro-
gram. Thus, conjunctive programming can either be equally elaborate as, or
considerably simpler than, conventional literate programming, at the whim (and
according to the resources) of the author. o

Conjunctive programming allows freedom of expression for whatever good it
may inspire. It also serves those who must more rigorously conform to industry
or government standards. Certainly the tools of conjunctive programming are
capable of capturing and expressing far more literate examples of programming
than will be seen here. The fault lies not in the conjunctive programming
concept, nor with the use of the tools, but rather, as in all programming, in the
capability of the practitioner and the time resources available,

Consistency is the degree to which artifacts are internally and externally free
from contradictions. Consistency conveys compatibility in content, style, and
terminology. One form of consistency relates to currency, which is the degree
to which the documentation correctly applies to the existing system. Literate
programs are guaranteed to be current in coding specifications by their construc-
tion. Parts of a literate program may be incorrect or in conflict, but these parts
always define the program totally, for better or for worse. Conjunctive programs
draw system information directly from the system database. Whether copied
completely or correctly, the objects conjoined are true reflections of what is in
the system. Automated updates of documentation using MAKE whenever system
changes are made will help to keep conjunctive programs current. The Conjoin
tool currently does not search for inconsistencies but will complain whenever
directives are inconsistent with the content of the artifact being accessed.

Synchrony is the degree of consistency between referenced portions of sys-
temn files and the contexts of the documents in which these excerpts appear.
If maintenance deletes a code segment previously excerpted into a document,
asynchrony appears as a “hole,” or error, in the document context. If a pro-
gram modification erroneously moves an entity reference key, the code viewed
may not pertain to the document subject matter at that point. Synchronism of
document text and excerpted material requires robustness in the entity refer-
ence scheme and immunity to changes in the system. More about the creation
of robust entity reference keys appears later in this report, in Section 5.2.

Wm0

92-12 11

2.2 Life Cycle Considerations

Conjunctive programming methodology need not be limited to the code devel-
opment and maintenance portions of the software life cycle. There is nothing
inherent in the conjunctive programming concept that restricts linkages only to
established portions of program code. Conjunctive programming can serve all
phases of the life cycle, because these involve separate, but highly interrelated,
products. Life cycle documents include project plans, work implementation
plans, statements of work, quality assurance plans, configuration management
plans, and various technical documents governing and resulting from the soft-
ware implementation. Each of these products may contain information that is
identical to, or closely related to, information in other products. Productiv-
ity and document currency are potentially improved by conjunctive methods
applied to the project artifacts.

For example, planning documents often refer to budget goals, obligations,
and actual costs; to schedule commitments, milestones, and accomplishments;
and to resource constraints, workforce loading, and facility utilization profiles
that are planned, monitored, and controlled. These resources are likely to be
tracked by a project management system and controlled by the corporate ac-
counting system. Conjunctively programmed project-planning documents can
access the actual controlling repositories for accurate and current information,
perhaps via interfacing tools. ‘

Requirements documents commonly cite and/or repeat material from gov-
erning and auxiliary documents, system documents, user manuals, interface
agreements, and results of analyses. Design documents cite material from the
governing system and interface requirements, user manuals, outputs of design
tools, program design analyzers, etc. All are ripe candidates for the conjunctive
approach.

Maintenance documents require detailed as-built design specifications, in-
cluding construction information in the form of code structure, MAKE files, linkage
edit instructions, batch scripts, software interface specifications, etc. Section 7
and the appendices give examples of the use of conjunctive programming to
record system implementation information.

Planning activities typically create test plans, requirements, criteria, proce-
dures, and test cases, which are set forth and agreed upon before testing actually
proceeds. Test results are commonly documented in various reports. Delivery
of software to a customer generally requires still more documentation in the
form of configuration audits, version descriptions, delivery conditions, instal-
lation plans and provisions, and maintenance agreements. Software sustaining
and maintenance activities involve implementation of system changes and the
maintenance of currency and synchrony among documentation elements and
the system components. Potentially, conjunctive methodology can reduce effort
and improve the quality of test documentation by reduction of redundancy and
maintenance of currency. ')

12 92-12

2.3 The Cogfoin Program

The processing engine for conjunctive programs described in this report is
Congoin, which, in its present form, is a considerably less grandiose and ad-
mittedly simpler tool than WEB or Intermedia. It is written in' C, but could
probably have been implemented as an additional macro package incorporated
into TEX, had I been a more competent TgXnician. There may even be cut-
and-paste programs that are already available on the market that would have
saved me the trouble of writing the Coxoin program altogether.

Coxgjoin requires only a minimal production environment: a text editor to
create code, data, and documents; TgX, for document production; and a com-
piler/linker, for translation to machine executable form. It replaces query direc-
tives in the conjunctive program file with text copied from other files. Location
criteria include the source file name plus either absolute locations within the
file, string contexts within the file, or relative locations from string contexts.

I had, at one time, thought of naming the conjunctive programming engine
stitch, because it belonged in the same genre of names as WEB, TANGLE, WEAVE,
and KNIT, the mainstays of literate programming. Conjunctive programming,
however, is far more than just the “stitching” together of software artifacts,
although that is precisely what the Corfoin tool does. As in literate program-
ming, the bulk of the effort is not spent in sewing, weaving, and knitting, but in
composition. It is with the trusty text editor that the conjunctive craftsperson
generates directives that sew extracted software and data elements into place,
and it is here that the conjunctive artisan creates the narrative and graphic logic,
justification, explanation, and other particulars that give tangibility, meaning,
and worth to the finished product. Neither literate programming nor conjunc-
tive programming can be characterized as word processing, even if that is where
most of the practitioner’s time is spent. In order not to connote the mere me-
chanics of the tool, but rather the method to which it contributes, I chose the

name Coxjoin.

2.4 Impacts on Method and Expression

Conjunctive programming does impose a discipline on its practitioners. I re-
alized this while developing the Confoin program. My original intent was to
provide a method of documentation that did not impact programming at all.
I initially wrote a small prototype of Confein to assist simultaneous develop-
ment of code and documentation. Other features were appended later, as the
needs for them became known. Requirements for additional capabilities were
also recognized, some of which are discussed in Section 6.

After adding several features and modifications, I realized that 'synchroniza-
tion between the conjunctive source and the accessed files is an essential need
of conjunctive programming that is still not yet adequately robust. The pro-
grammer is left responsible for creating and maintaining linkages between the

92-12 13

accessed code and other data files. No distinctive mechanisms that will be
resilient to later changes are automatically provided.

As Coxoin evolved, I realized that I was reworking parts of the program
that already correctly functioned merely so that I could explain more easily
how they operated. Just due to writing about it, the code was changing sig-
nificantly in structure, although not in function. Additionally, I found many
programming simplifications and subtle faults when describing the code. I thus
relearned that the way one presents and describes programs influences the way
one structures them. It is therefore not totally true that conjunctive program-
ming is completely flexible and conformable to every mode of programming.
Some adaptation within the practitioner inevitably takes place.

2.5 Goals

My reason for developing Conjoin was pragmatic. I generally document the
papers, reports, and programs I write using IWTgX. The style of these documents
appears very similar to that of this report. I had just completed a research
effort resulting in the development and concurrent documentation of a tool for
simulating the software reliability process {20]. In writing the documentation,
I manually cut and pasted segments of the code with a text editor into the
document. Keeping the document and the program code consistent was very
time-consuming and unproductive.

1 needed something to extend the environment that I already had, and with
which I was familiar—something that would adapt to my method and manner
of expression. I did not want to learn another documentation system, nor did
I want to reinvent the wheel. I wanted to have the code and documentation
separate for ease of editing, compilation, debugging, and distribution. Having a
program such as Cogfoin would have served these needs and eliminated a great
deal of frustration and rework.

I began to apply Confoin by using only string-context searching to locate
material for pasting into the document being written. I soon recognized the
need for more a robust entity reference method as changes were made in the
program. Slowly I began to introduce better anchors into the code, but only
as needed. Wherever I applied more robust markup principles, the excerpt
references proved to be more consistent. Elsewhere, I found that the extractions
proved to be more fragile to evolutionary changes in the artifacts. I am still
learning the effective means for generating robust, yet convenient, markup.

2.6 Relation to Literate Programming

Literate programs are literal programs; that is, the program source itself is
integrally bound within the document that describes it. Every operation and
every declaration, however trivial or minuscule, must appear in the document.
Literal programs are complete programs, even if narrative, tabular, and graphic

14 92-12

descriptions in the remainder of the document are incomplete, inaccurate, and
unintelligible. The code appearing in the program document is the actual code
that compiles and runs. .

Conjunctive programs, on the other hand, do not necessarily document an
entire program, line by line. Those portions of code and other data that are
displayed within the document are actual and current, as in literate programs. A
MAKE program with dependency files maintains currency between the document
and the source elements. As in literate programs, descriptions of excerpted
system artifacts may be incomplete, inaccurate, and unintelligible.

Both literate and conjunctive programs are (ultimately) processed by TgX,
so they both generate documents of high typographic quality. They both permit
the creation of textbook-quality documents, when warranted. They both display
segments of code interspersed with explanatory text, figures, and tables. The
code you see in both documents is the actual program source code. The order
of appearance of code segments in both documents is independent of the order
in which these segments are presented to the compiler. Both have mechanisms
that maintain currency between the program that is seen in the document and
that which executes. Both are operated in an edit-compose-render sequence
of steps where editing may be interactive, but composition and rendering are
batch-mode processes.

Both currently suffer from a number of disadvantages, some of which are
technology related:

(1) Each is constrained by the limitations of the document processing system
and the program development environment.

(2) Both need better means for displaying figures and graphics, and neither
supports a graphics-based design methodology very well.

(3) Neither is oriented for WYSIWYG? operation. An interesting experiment
would be to adapt Coxfoin for use in a WYSIWYG environment, such
as Ventura Publisher [21], which also uses a rather simple hidden-text
markup that is consistent with the Confoin program design.

(4) Both have been applied only to traditional types of systems and products.
For large programs, document indexes, tables of contents, and lists of
figures may not be as useful as online documents with automated display,
search, and interaction tools. The current documentation trend is toward
distributed heterogeneous multimedia systems incorporating hypertext.

These problems can be overcome by enrichment of concepts, tools, and practices
that will take better advantage of the evolving technology.
Conjunctive programming may offer some advantage over traditional literate

programming in the following ways:

3What You See Is What You Get.

92-12 15

(1) It can adapt to the way people now develop systems. The order of code and
documentation development, the separateness of the artifacts produced by
these activities, and the content and level of document detail can be tai-
lored to project and individual needs and existing organizational standard
practices.

(2) It works conceptually with all programming languages that permit embed-
ded comments and document generators that allow hidden text. Devel-
opers already familiar with a documentation system do not have to learn
another system.

(3) It is applicable to retro-engineering efforts with no additional risk to the
system operation.

(4) It can be used to facilitate concurrent engineering and other forms of
collaborative activity, because it can make the documentation and other
products of all the teams accessible to everyone without requiring any
changes in existing software responsibilities. Programmers can be separate
from documentation personnel, and both can maintain cognizance over
their separate charges.

(5) It can be used throughout the life cycle, not only for program documen-
tation, but for all kinds of project artifacts that integrate information
from multiple sources. Markup standards and change notification proce-
dures can be made a regular adjunct to project implementation plans and
practices.

(6) It can use existing development environmental tools, such as symbolic in-
teractive debuggers, text editors, and program analyzers. Confoin does
not have to duplicate the functions that commercially available tools al-
ready have, but may incorporate their results.

(7) It promotes reuse of existing code, data, and documentation. This reduces
“waste” in the Total Quality Management [22] sense.

(8) In cases where the copious display of code in a document is not required
or desired, conjunctive programming can just provide specifications, ex-
planation, and a bridge into the pertinent portions of code and data. For
example, maintenance personnel claim they prefer reading code in source
form once they have an understanding of the program, a road map into
the code, and access to explanatory documentation, when needed.

I can also see several disadvantages in conjunctive programming, among which
are

(1) There is no automatic assurance of completeness, when such is desired.

Colthad Lk

16 92-12

(2) There may be a loss of currency in documentation if program elements
change without reMAKEing the documentation.

(3) It does not promote structured design and structured programming as well
as literate programming. o o

(4) Congoin does not automatically generate indexes and cross references, nor
does it automatically format the resulting document as well as WEB does.

92-12 Y

3 USING (Conjoin

A Coxoin program is a text file formatted for processing by a markup document
compiler or generator. As currently implemented, Coxgjoin programs produce
BTEX documents; other dialects of TEX, such as AAqS-TEX and others, can
conceivably also be accommodated, although this has not yet been done. This
report was produced using WTgX, augmented by additional style markup com-
mands particular to this report.

Nothing in the conjunctive programming concept mandates the use of TEX
or its dialects, but the power TEX provides to the conjunctive programmer offers
a considerable incentive. The Coxfoin program has been structured to adapt
to other TgX-like document-producing engines by run time markup directive
redeclarations and recompilable definitions. Adaptation to the UNIX troff
system or to Xerox’s Ventura Publisher, for example, are possibilities for study.
TEX is used hereafter to illustrate the character of conjunctive programming as
(dis)colored by my own personal preferences, habits, and skills.

Currently, there are only two dependencies in Conjoin on TgEX that are
not changeable via run time directives. These are the TEX comment-initiation
string, “%4”, used by Conjoin to initiate its directives, and \verb|tezt] used to
enclose in line verbatim fezt. Such dependencies are localized in the program as
macros that can be redefined to the equivalent commands of another document-
generating engine.

3.1 The Source File(s)

The Coxfoin tool copies a user’s source file, assumed to be an ASCII text file,
line by line, directly into a target file. It is not essential that all the characters
in the text lines be printable characters, as long as a newline? appears regularly
within the maximum line length allocation. The lines are assumed primarily
to be made up of “regular text,” or text that will be recognized and processed
by the documentation system (i.e., KTEX in this report). In addition to this
regular text, there are 12 directives that are specially recognized and processed
by Confoin. These all begin with the target-processor comment signal string (for
TEX, “%4”), so that the user source could conceivably be processed directly by
the target processor, except that none of the Corgoin directives nor their effects
would appear in the compiled document. Rather, the user’s source file directs
the integration of information segments from many heterogeneous sources into
a target file that is then processed by the target processor (TEX or BTgX, et
al.) in the normal fashion.

4The meaning of newline is generally implementation-defined. Some systems use a com-
bination of carriage return (CR) and line feed (LF) to mark the end of a line, while others
use LF/CR or just one or the other by itself, and some have other special conventions. This
need not be a problem, as long as the text editor, Cogfoin, and the document generator all
recognize the same convention.

18 92-12

The length of text lines in the Cofoin source file is limited by the value of
the MAX_LINE macro within Coxjoin program,

#define MAX_LINE 135

Each Corgfoin directive, except %size, is copied intact into the target file.
Since these are formatted as comments, they will not be seen in the document
being created. Each directive, except %size, should appear on a separate line in
the source file, and may not exceed one line in length. The %size directive may
appear anywhere within ordinary text. The Cogoin directives are sensitive to
capital and lowercase alphabetic characters.

The directives in alphabetic order are:

e Yaccess file_name break_string starl_string range_separator end_string
e Ybreak break_siring
e Ycolumn slarl_column _
e Y%count count_signalw N
o Ygarbage substitution_char
e Ypath directory
e Yposttix end_environmeni
e Yprefix begin_environment
e Yrange range_separator
e Yshow { on | off }
o Ysize{C |l al|lT]| r}
o Ytabs tab_width
Each of these is described in detail in this section. Path and file names used in

the examples are shown in MS-DOS style.

3.2 Selective Inclusion of Text Files: %access

The workhorse of the Cogfoin program is the %access directive that selectively
locates, copies, and formats text from files by using the environment set by the
Yprefix-Yposttix pair. Most of the material displayed here in the TEX \tt
font was %access-ed from system objects. -

92-12 19

For example, the definition of the constant KIL in the ConJoin program may
be printed by accessing the context of the #detfine statement,

Yaccess ConJoin.c, define NIL+0 ~ 1

(note that the character # does not precede define in the %access directive
because # is the default count_signal, described later). Coxfoin responds with
the result

#define NIL ((void *) 0)
Congoin supports three kinds of location markup tagging:
(1) by context (as above)
(2) by line position in the file
(3) by line position relative to a context

This markup recognition is not as general as that offered by a HyTime-compliant
engine, and may be augmented in future versions (see Section 6). Confoin can
find contextual keys in the system database, either occurring naturally or placed
there as anchors for more robust access. As a result of my using both approaches
in describing the Conjoin program in Section 7, I now recommend that users
embed unique, standardized anchors in the system database that will withstand
system evolution. However, all three reference schemes will be explained below.
The syntax of the directive is

Yaccess file_name break_string start_string range_separaior end_string

The file_name identifies the name of the file in which the text segment to
be copied may be found. The break_string is “,” by default. The optional
stari_string and end_string take the form

[match_siring) [count_signal count 1 [£offsel]

In each case, the match_string is a set of substrings, separated by break_string, of
characters to be matched exactly (case sensitive) within the named file, in order.
That is, matches for each substring are sought in the order given. Subsequently,
the offset is an integer number of lines past or before the string match condition.
The count, when present, is always considered positive and denotes the number
of matches necessary to start action. The default count is one. The number of
substrings is limited in number to

#define MAX_CONTEXT 10

If the starting match_string is missing, then the match condition is satisfied
at the beginning of the file. A default offset of unity is presumed if the starting
offset is missing. A unity offset causes all lines up to and including the matching

20 92-12

line of the named file to be skipped. Setting the offset to +0 prints the line
fulfilling the string match condition, and a positive starting offset of n causes n
lines in addition to the matched line, to be skipped.

Negative offsets are also permitted. Setting the beginning or ending offset
to -n causes the action to take place n lines before the fulfiliment of the string
match condition. It is necessary, in this case, that Confoin maintain a queue of
length n, which is limited in size to

#define MAX_Q 100

If the ending match_string is present, but the offset is missing, an offset value
of -1 is assumed. Congoin stops copying at the line matching the match_string
condition in this case. Setting the ending offset to +0 causes the line fulfilling
the match_string condition to print.

If the ending malch_string is missing and the ending offset is non-positive
(the default when missing is -1), copying extends until offset lines prior to the
end-of-file. If the ending match_string is blank, but a positive offset is present,
that value specifies the number of lines that will be copied from the named file.

The + in a positive offset may be omitted when the matich_string and count
fields are absent. The - in negative offsets must always appear.

The range separator default ~ between the beginning and ending extraction
keys above can be replaced, if desired, with a more convenient mark by using
the %range directive described later in Section 3.9. The couni_signal default #
that signals the beginning of the count field may also be changed by using the
Y%count directive described in Section 3.5.

A typical usage of the %access directive is illustrated in the following:

Yaccess ConJoin.c, * strext *+0 ~ * end strext *+0
which produces

B /* strext /
/..tt“..tqp‘t.0“Ottttiitttttt‘t‘t‘ttt‘.“tttttttOtttttt.“ttoottttttott/

STRING (R . B
strext(s, t) /% Extract string t up to the close-comment string, if close
is not null, or to the end of t if null, into s. Remove
leading and trailing blanks from s and return s.)
/s S : o
STRING s, t;
{
STRING p;
if (eclose AND (p = strstr(t, close)))
strtcpy(s, t, p - t);
else
strcpy(s, t);
return stratrim(s);
) - - -

/* end strext »/

92-12 21

As seen above, this usage copies all lines between the first occurrence of a line
containing the beginning markup anchor substring * strext * and the next
occurrence thereafter of a line containing the ending markup anchor substring
+ end strext *, inclusively, into the target file. The result in the target file
is the source code for the strext() function shown below and explained more
fully later in Section 7.19.

Insertion of %access-linkages into the code in the form of distinctive com-
ments, such as * strext * and * end strext * above, brings a measure of
robustness that is not found with other contextual means of location. Synchro-
nization among conjoined files and %access directives is made more reliable
when separate markup is provided. Other means of text segment location, such
as by match count and offset, are much more fragile to changes in and move-
ment of code functions. Section 6 discusses possible future enhancements in
conjunctive programming tools that will promote further synchrony.

When the +0 offset designations in both the beginning and ending search
strings are omitted, the result is

/.l"..i...““.‘...‘........‘O‘.‘.‘.‘.“‘“““"‘....“.“.."...‘...“/

STRING
strext(s, t) /* Extract string t up to the close-comment string, if close
is not null, or to the end of t if null, into s. Remove
leading and trailing blanks from s and return s.
/* ./
STRIFG =, t;
{
STRING p;
if (sclose AND (p = strstr(t, close)))
strtcpy(s, t, p - t);
else
strcpy(s, t);
return stratrim(s);
}

The file segment could have been displayed just as well by using a negative
beginning offset,

Y%access ConJoin.c, strext(#9 -2 ~ 16

or using an ending search string that stops 3 lines earlier than the next function-
header-line,

Yaccess ConJoin.c, strext(#9 -2 ~ #*sss& #2 -3

because the strext() function appears on the ninth appearance of the name
in the program file. This method is not recommended, as it is very sensitive to
future changes in the program code.

Multiple substring context matches can also be specified as a means to avoid
ambiguity in locating a desired point in a file. As an example, the appear-
ance of close in the code segment above can be located by first searching for

22 92-12

+ strext * then bypassing the appearances of close in the function descrip-
tion by looking for STRING p, and finally, by seeking the next appearance of
close. The %access directive is written

Yaccess ConJoin.c, * strext *, STRING p, close +0 " 1

which results in the single line
if (»close AND (p = strstr(t, close)))

Note: If a match_siring contains either + or -, then it is necessary to apply
the count_signal so as not to mistake the sign character for the start of an offsel
count. For example, to access only the function banner portion of the strext()
module, one could use

Yaccess ConJoin.c, * strext * ~ /#--- #1 +0

3.3 Setting the Context Separator: Jbreak

The default delimiter for file names and matchk_string in the %access directive
is the comma character, “,”. This can be changed by using the directive

%break break_string
The default is thus equivalent to the statement
Y.break ,

The break_string may contain any (non-null) characters, including embed-
ded white space, but any leading and trailing white space is removed. The
break_string and the range_separator must be different (for error detectability
reasons), and these must differ from the count_signal, +, —, and all characters
that appear in the match_strings.

3.4 Setting the Alignment Column: Ycolumn

If, at times, the %access-selected text has too little or too much white space to
the left of the lines to be printed, an alternate starting column can be selected
by the directive

%column start column

The stari_column may be positive (added spaces) or negative (deleted charac-
ters). The default starting column is zero, so the default is equivalent to the
directive %column 0.

As an example, the Coqoin program contains a code segment that appears
in the ConJoin.c file as

if (NOT (txqueue[qex] = strdup(text)))
{ error_message(MEMORY_ERR, "*, FALSE);
error = TRUE;

92-12 23
break;
}

Using a %column -16 directive causes the output to take the form

if (NOT (txqueue[qex] = strdup(text)))

{ error_message(MEMORY_ERR, ", FALSE);
error = TRUE;
break;

}

The alignment column remains in effect until reset by another %column directive.

3.5 Specifying the String Match Count Signal: %count

The beginning and ending %access string matching specifications may, at times,
themselves contain the default match-count-signal, #. In such cases, the match
count signal may be changed by using the %count directive

Y%count couni_signal
The default is thus equivalent to
%count #

The break_string and the range_separator must be different (for error detectabil-
ity reasons), and these must differ from the count_signal, +, -, and all characters
that appear in the match_strings. '

Examples of the use of the count_signal appeared earlier, in Section 3.2.

3.6 Conversion of Non-Compilable Characters: %garbage

Text files occasionally contain non-ASCII characters (such as those of the IBM
character graphics set) that cannot be printed by the target processor. In such
cases, Confoin makes a substitution. All non-printable characters are replaced
by a “garbage” character, which by default is #. This default can be changed
by using the directive

%garbage substitution_character

The substitution_character remains in effect until reassigned by a later %garbage
directive. If no substitution character is named, no substitution is made. No
provision is currently available in Conjoin for character translation other than
this simple indication of where non-printable characters have been encountered.
The default is equivalent to

“garbage #

As an example, all the files describing and comprising Conjoin contain a
copyright header that contains graphic characters recognized by most IBM-
compatible printers, but not by TgX. When Congoin-ed, this banner appears

94 ' 92-12

P22 2222222222222 2222322 23 tE2 22222222222) 122 2222222222222222222 2]
is]
is Copyright (C) 1992, California Institute of Technology ®
%s i1]1 rights ressrved. U. S. Goverrnment sponsorship under NASA 4
is Contract NAS7-918 is acknowledged. -]
s]
4s Robert C. Tausworthe s
%s Jet Propulsion Laboratory s
%s 4800 Dak Grove Drive
%is Pasadena, Ci 91109-8099 s
£]
14
YSSRSEREERRERSRERRRNRRRESSRASRESIREERSERLSNSRERRRESS LI RRIIRINNS

When viewed by a text editor or as a direct-dump printout, the garbage char-
acters above form a double-line box around the notice.

3.7 Setting File Search Paths: Ypath

When text segments to be accessed are in a directory other than the current
default path, or if segments are to be copied from files in several directories,
these paths may be identified by using the %path directive,

Ypath directory

Paths remain in effect throughout the remainder of the Coxfoin file.
Any number of path directives may appear, up to the maximum number
defined in the Confoin program, currently

#define NUMBER_OF_PATHS 20

The benefits of the Y%path directive are that its usage can help make doc-
ument files more portable and adaptable to multiple platforms, permitting lo-
calization and concentration of search directory specifications, thereby reducing
the sgr’xg(ﬂtiy of the document. to path nammg conventions. Furthermore, it
also shortens file names appearing in %acces ,dlrectlves o

An example of the Ypath directive usag is the following: Several functions -
accessed by the Coxfoin program are located in a separately compiled hbrary
for which the source code happens to be available. This code appears in the
directory \c\topc\c, which, as one may easily guess, refers to “Tausworthe’s

Own Personal C” library (TOP C)

%access \c\topc\c\stratrm c, exens0 ° . S

Alternately, one may use a ¥%path statement to identify the hbrary directory,
%path \c\topc\c\
Yaccess stratrim.c, ***%%:+0 ~

Note that the final directory separator (here, \) is necessary in the %path state-
ment, as path strings are directly concatenated with the accessed file name in
searching for the file.

92-12 25

Either of these two alternative forms transcribes the same file segment into
the target document:

/‘.‘.“‘.‘..‘....‘..‘.O..‘.l.“.“..‘.“‘. L1211 L) (L1 /
STRING
stratrim(s) /¢ Trim all white space from s, leading and trailing, and
then return s.
/e */
STRING =;
{

FAST STRING p;

p = strfnb(s);
strtcpy(s, p, strlen(p));
return strtxrim(s);

}

3.8 Setting the Environment: Yprefix and Ypostfix

The environment for printing the text selected by the %access directive is con-
trolled by %prefix and %postfix directives:

%pretix begin_environment
Yposttix end_environment

where the beginning and ending environment portions of the directives are
target-processor commands that set up and terminate the environment for print-
ing %access-ed text. The defaults are equivalent to the following directives,
which enclose the BTEX verbatim environment:

Y%prefix {\footnotesize \begin{verbatim}
%postfix \end{verbatim}}

These defaults print the intervening text by using the \tt font, sized small
enough that an 80-character line fits into the width of a printed page. Lines
appear in the output document exactly as they do in the text file. Conjoin does
not perform “pretty printing” of the selected text. The regular font style and
size environment are restored by the %postfix statement.

Selected beginning and ending environment statements stay in effect until
changed.

3.9 Defining the Access Selection Separator: Jrange

The default ~ separator appearing in the description of the %access directive
above may not always be effective to use, such as when a desired starting
maich_string contains a ~ character. The default may be overridden by the
directive

%range range_separator

All leading and trailing white space in the range_separator are discarded by

26 : 92-12

Conjoin. The range_separator remains in effect until changed by another %irange
directive. The default is equivalent to

Yrange -
The break_string and the range_separator must be different (for error detectabil-

ity reasons), and these must differ from the count_signal, +, -, and all characters
that appear in the match_sirings.

3.10 Displaying the Coxfoin Directives: %show
Conjoin directives, except %size, can be displayed in the target document by
using the %show directive,

%show { on | off }

When on, each occurrence of a Coxjoin directive is made visible in the target
output file. The action of the directive takes effect immediately.

The directives used to display the NUMBER_OF_PATHS definition in Section 3.7,
for example, were

%show on

%column 8

%pretix {\begin{verbatim}

%access ConJoin.c, NUMBER_OF_PATHS+0 ~ 1

#define NUMBER_OF_PATHS 20

%column O
%prefix {\footnotesize \begin{verbatim}
%show off

The display setting persists until reversed by another %show directive. The
default is equivalent to

%show off

3.11 Displaying File Sizes: isize

Each time Conjoin is run, a file having the same name as the target file, but
with a .siz file type, is written that tells the total numbers of lines

(1) in the Conjunctive program source file
(2) transcribed into the target file by %access directives
(8) written to the Target file

(4) the ratio of the latter two

92-12 27

These numbers are available via %size directive, which may appear anywhere
within a line being processed. The syntax is

Ysize{C | a | Tl r}

The options, C, a, T, and r may appear either capitalized or uncapitalized and,
respectively, correspond to the four items above. Since the items refer to the
sizes of the file when it was last processed, there may be an error if the number
of lines has changed. To avert this possibility, Conjoin should be run at least
twice before processing by TEX.

As an example, ¥%size is used four times in the following sentence where
underlined: The last time Conjoin processed the CJ_body.CJn file, it contained
3159 lines, which transcribed 1184 lines from other files into the target file, to
produce a total of 4351 lines in the target file. The extra 8 lines in the target file
over its constituents is an identification banner, described later in Section 7.15.
The ratio of transcribed-to-total lines is 0.272.

3.12 Altering the TAB Width: Jtabs

By default, tab characters in the %access-selected file are expanded to align
text on columns 8 characters wide. This default may be overridden by using
the %tabs directive,

%tabs tab_width
The default is thus equivalent to
%tabs 8
The TOP-C library function strtcpy() with %tabs 4 in effect displays as

/“"".““..i...‘..‘.‘....‘...“....‘...“‘t.“. ...‘..‘.‘..‘.“O.‘..‘../
STRING
strtcpy(s, t, n) /+ Truncated string copy. Copy at most n CHARs
of t into s, and return s. BNote: in contrast
to strncpy(), the returned copied s always ends

in NUL.

/* */
STRIEG 5;
const STRING t;
gize_t n;
{

size_t m;

it (s)

{ == strlen(t);
n = KIN(n, m);
memmove(s, t, n);
s(s + n) = WUL;

}

return s;

28 . 92-12

The same code with the default %tabs 8 in effect appears later in Section 8.7

for comparison.
The tab width remains in effect until altered by another %tabs directive.

92-12 29

4 INSTALLING AND RUNNING (Confoin

This section describes how to run Cogfoin on the IBM Personal Computer,
or compatible. It does not explain how to run either TEX or LTEX or the C
compiler. It is assumed that user guides are available for these and that the
user is already familiar with their operation. To date, Confoin has only been
implemented for the IBM PC; however, the program is written in ANSI standard
C, except for a few routines that have been accessed from my TOP-C library,
which are included in a separate source file on the product disk.

4.1 Configuration
The ConJoin system described in this report requires the following environment:

(1) An IBM Personal Computer, or compatible device with at least 128 kilo-
bytes of available RAM for execution and utilizing the MS-DOS operating
system Version 3.1 or later.

(2) About 100 kilobytes of available disk or diskette space for system storage.
Disk storage is preferred, and the system has not been tested for floppy
diskette operation. Installation in the next section is limited to hard-disk
configurations.

(3) TEX and BTEX (or other publishing system), text editor, and other doc-
umentation tools, with the peripherals and storage they require.

(4) If modifications of the system are to be made, a text editor, C compiler,
and linker. The .bat and .mak files provided on the product disk are
configured for Microsoft C 5.1, and for my directory structure and devel-
opment system. These may have to be edited to conform to other compil-
ers and user environments. Additionally, the top.c functions should be
appended to the ConJoin.c file prior to compilation. See Section 9 for
more information on program modifications.

4.2 Installation
The steps for installing the Conjoin system are:

(1) Create a (preferably separate) subdirectory, such as \conjoin, and make
this the default directory:
>md \comjoin
>cd \conjoin
(2) Copy all the files from the distribution medium into this directory. For
example, if the distribution is a disk in drive a:, then

>copy a:i*.*

30 92-12

(3) Invoke Coxgfoin with no parameters to see the usage message:

SRRRRESRRRSRRSRRESSRRERTRSSRRRERENSLRRLIRLSRIRNRERIERLENRENRINEIERINENS

Copyright (C) 1992, Califormia Institute of Technology
A1l rights reserved. U. S. Govermment sponsorship under NiSi
Contract FAS7-918 is acknowledged.

]
s
] s
E
Robert C. Tausvorthe
 J Jet Propulsion Laboratory
2 4800 Oak Grove Drive
] Pasadena, Ci 91109-8099
 J s
3
]]

RE2222 222222222222 2222222222222 2 22222222222 222322222222 222222222 222222222

Conloin Program
(08-Apr-1992)

Usage: ConJoin <ConJoin source> <target file> [<options>]

Source file type default is .CJn
Target file type default is .TeX

Options:
~a Do not announce the program.
Command line error: No source file named.

This, or a similar message also appears whenever Coxjoin detects a con-
dition under which it cannot proceed furthet. '

4.3 Running Cogjoin

There may be differences in running Coxjoin, even on the IBM PC, or com-
patible, primarily in how execution is initiated and how files are specified. The
description here outlines the operation in datch mode. Once Coxjoin is initiated,
it reads its input files and writes its output file until completion. Selection of
the files is made on the command line at the DOS prompt. Some implementa-
tions may have menu- or window-based user interfaces that alter this procedure
somewhat. The user is expected to know how to create the equivalent of a DOS
command invoking Confoin and specifying its input, output, and options within
the user interface of the platform involved.

(1) File naming. The DOS operating system locates files by subdirectory
“path” and by “file name” and “file type” (or “extension”) within a di-
rectory. The user is expected to understand these general conventions, as
they are not further explained here. Files input to and output by Confoin
may be specified to have any subdirectory, name, and type. A missing

92-12 31

type in the input file specification defaults to .CJn; a missing output file
type specification defaults to .TeX. Coxfoin creates a file with the same
directory and name, but with type .siz that contains processing size
information (see Section 3.11 for further information on access to this in-
formation). ConJoin also saves the previous output file, if one existed, by
giving it a .T_X extension and removing the old .T_X file.

(2) Building source (text) files. The generation of a TEX conjunctive pro-
gram is almost the same as writing any other TEX document, except that
when information from a system data file is needed, or if the information
to be accessed is to appear in a modified format in the resulting document,
then at these points, Confoin directives are used as heretofore described.

To ensure that material be more easily or more robustly transcribed, the
user may edit the source file to insert entity reference markup in the form of
comments. Entity reference markup considerations are discussed further
in Section 5.

(3) Execution. While Coxfoin may be operated from any directory as long
as fully qualified path names are used to locate Coxfoin, source, and target
files, it is generally more convenient to change the default directory to that
in which the files are found,

>cd path
Then invoke ConJoin to process each conjunctive program by using
>c:\conjoin\conjoin options source target

The options may appear anywhere within the invocation, but the source
must precede the target designation. The source must always be present,
but oplions and target are optional.

If target is omitted, a default name is generated by using the source name,
but changing the file type to .TeX (current default).

Only one option currently exists: -a, which causes the JPL/Caltech copy-
right announcement, program name, and version date to be omitted. Pos-
sible future options are described in Section 6.

92-12 33

5 FURTHER CONSIDERATIONS

The continual, elaborate, and extensive flow of electronic documents within and
throughout industry, universities, and government agencies has created version,
review, revision, and currency problems for nearly everyone involved. Authors
often create multiple versions of a document for different purposes (full report,
literature paper, executive summary, etc.), to be communicated broadly and
to be viewed via e-mail, printout, video, and typeset media. When comments
and responses received from multiple sources must be matched to the versions
reviewed, all the information communicated must be managed in an orderly
way. This section discusses three areas where care and thought must be applied
in the conjunctive documentation life cycle: organization, linkage markup, and
retro-engineering. I deem these areas important because of the lessons I learned
in developing this report.

5.1 Document Organization

This publication, in its current form, is the integration of many files conjoined
for TEX processing. The top-level master document file shown in Appendix B.1
controls the integration of the many separate, constituent components that make
up the report. Appendix B.3 shows how the call-tree of Appendix C.1 and the
reference list of Appendix C.2 are made each time the ConJoin.c program
changes. The document MAKE file in Appendix B.6 directs the generation of
the program size file, the translation of .CJn forms into TgX files, and the
subsequent production of the report by TEX.

The report structure is formed as it is because other documents are, or are
planned to be, constructed from the same baseline files by inclusion, exclusion,
and %access. The markup and composition techniques that have been employed
did not originate with this aim in mind, however, and for lack of my attention,
do not yet entirely fulfill this goal. Some rules for promoting currency and
synchrony have been relearned and reappreciated during the writing of this
report:

(1) Design the documentation using object-oriented concepts. Organize ma-
terial into separate, cohesive objects. Establish classes of items within the
system that will promote stability of products during an evolutionary life
cycle. Access entire objects to the extent feasible.

(2) Plan to develop separate volumes of product documents from a common
database of information from the beginning. Design the documentation,
code, and data schemata to accommodate multiple views (subschemata)
of product documents.

(3) Separate document style design from document content design.

o ~ PREGEDING PAGE BLANK NOT FILMED
B8R 2 INTHITIONALLY R .

34 92-12

(4) Use aliases in source documents that will substitute application-specific
expressions in output documents. Localize the definitions of aliases into
a separate object for that application. In particular, use aliases for all
“magic numbers,” or arbitrary constants that might eventually change
over time or across documents. As an example, a KTpX command \work
was created to denote the current document type, here “report.” Every
appearance of the word report in this document traces to an appearance
of \work in the source file.

(5) Use syntactic and semantic location mechanisms to refer to internal doc-
ument structural entities (sections, subsections, bibliographic citations,
etc.), rather than absolute positional information.

(6) Use standard document types, outlines, and templates, when available.
This often prevents having to “reinvent the wheel” when designing the
documents in a new project.

5.2 Entity Reference Linkages

The successful evolution of conjunctive programs hinges on the query techniques
used to access information from system code and data media. All conjunctive
programming engines must support persistent tagging of information for query.
(In hypertext and HyTime, linkage tags are called anchors.) Code units to be
located by queries range in hierarchy from directories, to files, to functions or
declarations within files, to clauses within them, to statements or lines within
clauses, and finally, to atomic units (numbers, words, or other tokens). Similar
hierarchies apply to other forms of information. Synchronism between copied
information and the document context tends to decrease as the granularity
increases. That is, the content of 4 lines of text starting at the first occurrence
of the token “5” in a particular file is apt to be much more contextually variable
than is, say, an entire function. It is true that the function may change over
time, but the document context probably still concerns that function, whereas
the mere change of an earlier parameter value from 4 to 5 in the former case
completely destroys the correspondence between the code and the document
context.

Queries may be made by using absolute or relative locations, contextual
information, semantic content, or a combination of these.

Linkages to items in an information base may be made on the basis of abso-
lute and relative locations, context, and semantic content, in order of increasing
robustness. Each form of link requires some form of query processing. For
absolute and relative locations, mere counting suffices. In the case of context
queries, string matching or pattern recognition may be applied. Searching for
semantic content requires a system capable of interpreting the data it encoun-
ters. Conjoin accommodates the first two types of linkages in the form of an

92-12 35

absolute count of sequences of matched patterns followed by relative count of
lines.

Linkages to textual items can be made purely on the basis of location and
context information alone if desired. However, the use of distinctive markings
within the data purely for the purpose of establishing such linkages can produce
a much more robust synchronization between the referenced information and
the document context. Inserting linkage tags in code and data files may require
agreements with the owners and/or managers of those objects. However, the
minimal extra effort required during implementation to insert these marks may
yield a significant payoff in documentation productivity later.

Plans for making robust linkages should be considered early in the product
life cycle. Projects or cognizant individuals may need to develop standard con-
ventions for linkage markup, or may apply standards, if available. The tagging
should be distinctive and recognizable as linkage markup. It should have both
beginning and ending delimiters (these are useful for location, modification, and
removal, when needed).

Cohesive segments should be tagged whenever it is likely that access will
be made and location by the surrounding context is unreliable. In data where
embedded markup is disallowed, such as in data managed by a database man-
agement system (DBMS), other provisions may have to be made. For example,
preprocessing the information using queries to a DBMS may be necessary. Al-
ternatively, entity reference tags may be put into an auxiliary file and separately
accessed via a special linkage engine.

Robust markup works in both directions. Besides helping to synchronize
working files and documentation, recognizable linkages help during maintenance
in locating all the places in the documentation where descriptions of information
may be accessed. When code changes, for example, the linkage provides clues for
finding the corresponding narrative. Without recognizable markup, one is left
with a somewhat more difficult search. When changes are made in a program
file, one must search through all .CJn files for %access-es bearing the altered file
name. Then, in those files, one must look for contexts consistent with material
that was in the file before the changes took place. Some of this may be made
easier by a utility program to print file differences, as a guide to where the
changed areas are, and a utility program to trace %access conditions into the
code to check whether the range intersects one of the changed areas.

With distinctive linkage tags, however, one need only search for %access-es
to the changed files bearing the matching tags in the areas of change.

I had been working on the concept of conjunctive programming and the de-
sign of Coxoin for some time when the HyTime article appeared in the Commu-
nications of the ACM [8). 1 recalled while reading it that I had earlier reviewed
a draft of the proposed Standard Generalized Markup Language for JPL a few
years before and had since forgotten all about it. The ACM article made me
suddenly realize that conjunctive programming is part of a much wider data
interoperability discipline, one for which standards are emerging into practice.

36 92-12

Future work in conjunctive programming should investigate the use of the inter-
national standard for SGML [9] in conjunctive programs and augment Coxfoin
accordingly.

5.3 Retro-Engineering

The terms “retro-engineering,” “reverse-engineering,” and “re-engineering” have
been assigned slightly different meanings by researchers and others, but those
terms generally refer to efforts to redevelop quality attributes within existing
products after they have been implemented. I will not distinguish among the
subtle differences here. The process is one that involves recovering or improving
the design and translating, restructuring, or augmenting the program code.
Tools exist in some environments to create portions of the new documentation—
in narrative and diagrams—directly from scanning the code, while other tools
assist in converting the code into required forms. Documentation educed from
source code does not generate any new information about the code, although it
may present data about the code in a more human-understandable form. Code
translation can be slow, error-prone, inefficient, and costly.
Problems in retro-engineering tend to fall into one of the following areas:

(1) Implementation bias—recovery of general design information, rather than
language and system considerations, from available information, is difficult
and requires careful analysis.

(2) Traceability—links between recovered information and original sources is
needed for tracking completeness, consistency, and fulfillment of objec-
tives.

(3) Domain knowledge—the purpose, precision, range of values, rationale, the-
oretical basis, and significance of entities are missing and must be recre-
ated.

(4) Code correctness—latent faults may be duplicated into the re-engineered
products.

(5) Information credibility—defective comments and documents may be used
to re-engineer products, and faults in the code may make documentation
untrustworthy. - :

The tools available for retro-engineering are generally the same as those that
support forward engineering. They can produce data flow diagrams, control flow
diagrams, structure charts, data structure diagrams, entity-relation diagrams,
state-transition diagrams, and online dictionaries, and they can produce doc-
uments, analyses, and measurements. However, even though efforts may be
significantly assisted by the use of automated tools, retro-engineering remains

92-12 37

largely a human task of supplying information, structure, and capability not
otherwise derivable from existing products.

Conjunctive programming can be useful in generating traceability links,
recording recovered design and domain knowledge, conjoining appropriate por-
tions of original and newly developed artifacts, and preparing the documents
required. It can contribute to productivity by recording the recovered design by
using media specifically developed for handling documents and linkages among
information entities. Conjunctive programming should be particularly effective
in efforts involving redocumentation only, because existing artifacts may not
have to be altered at all.

P

92-12 39

6 FUTURE USAGE ENHANCEMENTS

The simple capabilities of Coqfoin discussed in Section 3 merely hint at the
utility of tools in support of conjunctive programming. The present section
discusses additional features and tools that may be developed if the Cogfoin
prototype is successful in garnering the attention of users at JPL or in NASA,
other government agencies, or industry. The order in which these, or other
functions suggested by users are developed, will be dictated by the needs of users,
development costs, and availability of resources. Estimated effort for making the
changes below also includes resources for review, test, and documentation. Costs
estimated as “minimal” are expected to require a maximum of one workweek of
effort.

(1) A directive that is the same as %access, but which does not insert prefix
and postfix strings: %use. This capability is available currently in Conjoin,
but is awkward, because the prefix and postfix must be nulled before and
reset after using %access. Cost: minimal, a few lines of code and 2
subsections of user-guide documentation.

(2) Provisions to permit matching leading and/or trailing blanks of entity
reference strings. Cost: minimal, a few lines of code and alterations in the
user’s guide.

(3) Directives %open and %close to change comment delimiter strings. Cost:
minimal, a few lines of code plus a new section added to the user’s guide.

(4) Directives %preshow and %postshow to alter in-line verbatim command
prefix and postfix strings. Cost: minimal, a few lines of added code and a
new section added to the user’s guide. '

(5) A none option for the %show directive to prevent the copying of Conjoin
directives into the target file. Cost: minimal, a few lines of code and a
short addition to the user’s guide.

(6) A directive %ignore on | off, or other such means to disable a directive
without having to delete it. Cost: probably minimal, with only a few
changes to Corgoin and user documentation, but some thought must be
given to scope, exact syntax, and selection of ignored items.

(7) Directives and command-line options to change all defaults, with an option
to read command-line arguments from a file. Cost: minimal, a few lines
of code each and a few corresponding changes to the user’s guide.

(8) Directives for selective access to contents: directives, such as %includeif
condition or %excludeif condition. Details on just how this should func-
tion must be worked out, especially with respect to the form of the logical
condition. Cost: unknown, but probably could be completed in less than

PREGEDING PAGE BLANK NOT FILMED

& g,fi;ﬁ;ﬁzyﬁg)uﬁut FIELE

40

(9)

(10)

(11)

(12)

(13)

(14)

(19)

(16)

(17)

92-12

three workweeks, one to work out details, one to make the changes, and
one to develop the user’s guide material, if they prove to be useful and
feasible.

Extension of the %size directive to permit access to other .8iz files. Cost:
unknown, but probably would require two workweeks, to work out details,
develop code changes, and amend user’s guide material.

A means to reinstate initial defaults. Cost: minimal, a few lines of code,
plus minor additions to the user’s guide.

Capability to push prefix/postfix pairs on a stack and to pop the stack
back to a previous environment, or to define multiple environments. Cost:
unknown, but probably would require less than 2 workweeks to work out

details, develop code changes, and amend user documentation.

Better execution efficiency through slight algorithmic changes, such as re-
taining open files to be accessed again, better pattern searching than from
the beginning of the file each time, and creating variables to replace the
various reevaluations of strlen(xx_SIGNAL) that appear throughout the
program. Cost: unknown, but incremental improvements would probably
require less than 2 workweeks each.

Improvement of program tolerance to changes by improving the cohesive-
ness of functions and the removal of side effects. Some candidates are
discussed in the Internal Operations Section, below. Cost: unknown, re-
quires a more thorough evaluation of likely maintenance traffic.

Means for conjoining nested accessed files to an arbitrary depth. Cur-
rently, only one level of conjunctive commands is accommodated. This
feature would permit text segments accessed by Coxgoin to contain fur-
ther Conjoin directives. Cost: unknown, but would probably require less
than 2 workweeks. -

Directives to access the date and time stamps of files, and to make deci-
sions based on these. Cost: unknown, requires more refinement of func-
tional requirements.

Command line options to set all Cogfoin defaults. A command line option
to input all options from a file; an option and directive to prevent Coxjoin
directives from being copied into the .TeX file. Cost: minimal, only a few
lines of code and minor changes and additions to the user’s guide.

Extensions to accommodate other document-producing systems, such as
Ventura Publisher, and others. Cost: unknown, some study will be re-
quired, but probably would require less than 3 workweeks, if feasible.

Ay

92-12 4]

(18) A more integrated system of tools that would permit automated generation
and maintenance of anchors and linkages, as in [10]. Cost: comparatively
high, as initial acquisition costs of such a system are unknown.

(19) A linkage manager that automatically registers the usage of conjoined
segments of files and oversees the maintenance of anchors and objects
within files. '

The progression from a simple tool, such as Cogjoin, to the ideal conjunctive
programming environment would require a more formal systems engineering ef-
fort and a significant commitment of programming resources. Cost-eflectiveness
would probably be reached far short of the ideal system, after having acquired
a set of tools that bridge the major difficulties in document creation and main-
tenance. Some useful auxiliary tools that come to mind include

(1) A coverage analyzer to assess the degree of completeness with which the
conjoined document describes an entire program or set of programs.

(2) A markup tagger with features for automatically generating robust entity
reference anchors within programs and other files.

(3) A tool to analyze programs and other files and to generate candidate
linkages that should be made within a conjunctive program.

Additionally, future efforts may convert the Conjoin system database into a
form conforming to SGML and HyTime standards or to integrate with hypertext
systems, such as Intermedia.

92-12 43

7 INTERNAL OPERATIONS

This section describes the Coxfoin program in a form as literate as is possible
for me to produce in normal documentation time. The goal in normal documen-
tation time is not necessarily to be literate, but descriptive and communicative
to an audience with assumed skills and levels of expertise. In describing the
program below, I have assumed that the reader is familiar with the ANSI stan-
dard C language and its library functions. I will not explain the C statements
nor the ANSI library functions, aside from their roles in the Coxjoin program,
when noteworthy.

The Congoin program itself does not currently fully conform to the SGML
markup standards but does align with their goals. :

It is difficult without referees to know how much explanation is necessary for
describing a program, even to an assumed audience, particularly one as short
as this, having only 977 lines® of code. Is it necessary, for example, to tell
a programmer why a C program includes stddef .h? Every C programmer is
familiar with this header file and more likely has to be told if and why it has
been left out, rather than why it has been included. Understanding what a
program does and how it does it generally requires less information than the
literate program, which must document every detail of compilable matter.

However, for maintenance and reuse, it is necessary to know what use is
being made of all information given to the compiler. For example, the Cogjoin
program at one time during its development referred to INT_MAX, a value de-
fined in limits.h. A subsequent design improvement deleted that reference,
whereupon it was possible to remove the corresponding #include statement
from the code. Neither reader understanding of the functions and algorithms
nor the computer performance was impaired by the unneeded #include in the
program. Nevertheless, it was superfluous, outdated, and proper for exorcism
by the attentive maintenance programmer (viz., me).

In the remainder of this report I shall attempt to describe what I think a
reader fluent in ANSI C should know in order to understand precisely what the
Corgoin program does, how it does it, and why it was constructed as it was.

My particular manner of expression will be evident throughout the program.
Although certainly influenced by the Plum Hall standards [23] of the early 1980s,
my own style has evolved into a fairly consistent, somewhat distinctive set of
practices and habits summarized below. Some may find fault with the form
and composition, others will not. Practically all will notice, however, that it is
distinctive. Whether this style would be effective if used by others is unknown.
A bibliography of research in programming style appears in [24].

The point is that conjunctive programming and Coxjoin have permitted

5This number was %access-ed from a file CJ_prog.siz using empty prefix and postfix
strings (i.e., in a non-verbatim mode}). The file was written by a utility program flines that
scans the ConJoin program and records its length whenever Cogjoin changes. This occurs
automatically, directed by make. -

PREGEDING PAGE BLANK NOT FILMED

e, et =

44 ' 92-12

me to express myself in text and in code in the way I wanted®—for better or
worse. The way I indent code in the source files is the way it appears here.
Tortuously convoluted operations that appear nested within C if-constructions
and elsewhere reflect the way that I think in code. I need documentation to
help me after a while to unravel the intricacies of expression and to recall what I
must have been thinking at that time—to revive the latent intellectual character
of what would otherwise appear to be cryptic.

As algorithms go, none in Coxgoin is particularly curious. In fact, every
function seems perfectly straightforward—except for a few subtleties here and
there that I hope will be clarified. My optimism is probably natural, since I
have just recently written the program and it is still fresh in my mind. To
become more sensitive to what this report should have contained, but does not,
I will need feedback from others and an opportunity to redo it in a year or so,
to provide the rationale now seemingly too obvious to be mentioned (but which
will likely be evident by then), to correct misstatements, to include informative
material obtained after publication, and of course, to update the narrative with
descriptions of new and altered features.

The degree to which the reader comprehends this report will measure the
extent to which I have been successful in attaining my goals using conjunctive
programming. Insofar as those goals have eluded me, I hope the reader will find
the concepts and approach informative, or at least curious.

The code for Corgfoin is contained in the file ConJoin.c, and is listed fully
in Appendix A. The program displayed in this report should be viewed as
the internal JPL prototype to illustrate conjunctive programming. Some of the
enhancements discussed in Section 6 will probably appear in versions eventually
released for wider usage.

7.1 A Word on Progrémrrhing Style

This section is included not t;oraéfehdiliﬁ):'" pébgran{r’rrii'hgwstyle but to explain
what will be seen. The normal order of items in one of my program files is
(1) Program header, with version, file name, copyright, and author declara-
(2) Header files, in order as applicable: ANSI standard headers, ANSI-confor-
mal library and macro headers, special system library and macro headers,
and, lastly, system-dependent library and macro headers.

(3) Local macro definitions, if any.
(4) Global function prototypes not contained in include-files, if any.

(5) Global data structures, if any.

$This is not so surprising, since I developed Cogfoin to do what I wanted. Hopefully,
however, I have made it general enough to permit others this same freedom.

92-12 45

(6) Local function prototypes, if any.
(7) Local data structures, if any.

(8) Functions, in alphabetic or depth-first” order, except for main(), which is
always the first function.

Each of these is displayed in a distinctive way. For example, the declara-
tion of each function appears inside a banner (see the strext() function in
Section 7.19) that consists of a right-justified comment containing the function
name, followed by a distinctive, eye-catching row of asterisks. The function
scope and return-type declaration appears on the next line, indented to empha-
size the function name and parameters on the next line, flush left. An annotated
description of the function and its return values, followed by a row of hyphens
to enclose the description, end the banner. Parameter declarations appear im-
mediately thereafter, followed by the curly-bracketed function code.

No explicit function return type is specific if the default int applies. Simi-
larly, int formal parameters are not declared.

The function’s statements are indented as follows: Each level of statement
logic indentation is one full 8-column tab, and each continued line is indented
under its parent line by 4 spaces (a half tab). Each case of a switch ()
statement is indented 4 spaces from the switch on a separate line, and each
case clause gets a full tab indentation.

Blank lines separate return, break, and continue statements from suc-
ceeding lines in functions and loops, except when the next line contains only
a closing curly brace. In this case, the nearly blank line suffices to set off the
early departure from normal processing. Blank lines also separate data struc-
ture declarations from the algorithmic code and appear in other places where
they seem to bring better clarity.

Curly braces are always vertically aligned in function definitions, struct
declarations, and nested control-logic, and usually also in data structure initial-
1zations.

All macro definitions have uppercase identifiers.

TFunctions in the Coxfoin program file appear in depth-first order.

46 92-12

7.2 Program Preamble and ANSI Header Files

The first block of code in the Coxnfoin program defines the program VERSION, de-
clares the copyright notice string array, and invokes ANSI standard include-files.
The array declaration at this point is not in the normal order of style described
in Section 7.1; placed here, it serves both to display the copyright information
that is required by JPL in its externally released software and provide a banner
for announcing the progtam, when executed.

#define VERSION “(08-Apr-1992)" /e (ConJoin.c)e/

char copyrightnotice[14][76] = S

{ "SSEESREISSRRERRNLSRNRESESSSSNISSSRASRERNNSLSLENNIRNNRRININNRIRNNIY",
vy 7 s,
i Copyright (C) 1992, California Imstitute of Technology 8",
"g All rights reserved. U. S. Government sponsorship under FiSi 8",
s Contract NAS7-918 is acknovledged. ",
vy .u'
it Robert C. Tausvorthe 3",
"3 Jet Propulsion Laboratory 3",
it v 4800 Dak Grove Drive 3",
b Pasadena, CA 91109-8099 ',
vy s,
ug o

};

/e

ANST STABDARD HEADER FILES */

#include <ctype.h>
#include <errmo.h>
#include <stdlib.h>
sinclude <string.h>
$include <stdio.h>
#include <time.h>

Note, in this prototype form, the VERSION is identified by a date, rather than
a release number. This date is automatically supplied by my (customized) text
editor whenever I alter the file. The new date replaces whatever appears within
the first set of parentheses in the file. The second parenthetical element is the
name of the file, manually placed there for my convenience.

The header ctype.h is included because it contains function prototypes
and/or macros for isspace() and isprint(), which are accessed by the func-
tions fgetstr() (Section 7.26) and isdigit(), the latter of which is used by
the access() function (Section 7.20).

The string.h header appears because the function prototypes for strcat(),
strchr(), stremp(), strepy(), strlen(), and strstr() are accessed in vari-
ous parts of the program.

The stdio.h header contains function prototypes and definitions of famil-
iar input and output entities, such as fclose(), getpos(), fgets(), FILE,

92-12 47

fopen(), fsetpos(), perror(), printf(), and stderr, scattered throughout
the program. :

The time.h header provides definitions for the tm structure and time_t data
type, and function prototypes for asctime(), localtime() and time(), all of
which appear in the timestamp() function (Section 7.15).

The stddef.h header file is not used, because the only useful element in it
was NULL; however, NIL is used instead (defined in Section 7.3 below).

48 ' 92-12

7.3 Definitions, Defaults, and Macros
7.3.1 Synonyms

Corfoin defines a number of data types, storage classes, constants, and opera-
tors.
typedef int BOOL;

typedef unsigned char CHAR;
typedef unsigned char * STRING;

#define GLOBAL extern
#define LOCAL static
$define NIL ({void *) 0)
#define FUL 0
#define FALSE [s]
#define TRUE 1
#define AND [4
#define IS ==
#define ¥OT !
#define MOD %
#define OR It

I adopted synonyms for the storage type macros extern and statiec, viz.,
GLOBAL and LOCAL, for some now-forgotten, but probably cosmetic reason, many
years ago. GLOBAL data and functions are accessible by all program file elements,
while LOCAL entities are accessible only within the environment in which they
are defined.

The null values NIL and NUL were defined for distinguishability among null-
pointer and null-integer names. IS was defined because I was continually getting
in trouble using = where == should have been (a carryover from programming
in languages with no distinction between assignment and equality operators),
and the other operators followed for similar reasons.

7.3.2 Manifest Constants

The manifest constants in Confoin are

$ifndef FILENAME MAX
$define FILENAME_NAX 50

#endif

#define MAX_CONTEIT 10
$define MAX_LINE 135
8define MAX_Q 100
#define NUMBER_OF_PATHS 20
tdefine PAGE_WIDTH 75

FILENAME_MAX is normally defined in stdio.h, as required by the ANSI
standard. However, it does not appear there in the Microsoft C 5.1 used to

92-12 49

develop the program, so I have defined it conditionally here. MAX_LIKE is the
maximum assumed length of a text line in a Confoin source file. MAX_Q is the
maximum number of lines that may be queued, and thus the maximum negative
offset for lines transcribed by the %access directive. The NUMBER_OF_PATHS
is the maximum number of %path directives that may appear in a Cogjoin
program. The PAGE_WIDTH value is used by timestamp() in writing the warning
banner on the target file being produced (Section 7.15).

7.3.3 Directives

Since Confoin directives are recognized and passed as comments to the target
processor (TEX), it is necessary for Confoin to recognize the comment syntactic
conventions of the target processor. Conjoin recognizes directives as specially
formatted strings appearing between open and close markers, whose values are
defined by

#define UPEB_COMMEIT "e"
#define CLOSE_COMMENT "
#define COMMENT_LENGTE 10

These values are among the few in Confoin that are not alterable by run time
directives options. They limit Cog7oin operations to TEX and its dialects. Other
target processor comment delimiters can be accommodated only by recompila-
tion.

Next are defined the Conjoin directive signal strings. When these appear,
the actions described in Section 3 take place.

#define ACCESS_SIGNAL OPEN_COMMENT “access"
#define BREAK_SIGNAL OPER_COMMENT "break"
#8define COLUMN_SIGNAL OPEN_COMMENT “column”
#define COUNT_SIGNAL OPEE_COMMENT “count™”
#define GARBAGE_SIGEAL OPEN_COMMENT “garbage"
#define PATH_SIGNAL OPER_COMMENT “path"
$define POSTFIX_SIGNAL OPEB_COMMENT “postfix"
8define PREFIX_SIGEAL OPEN_COMMENT "prefix"
8define RANGE_SIGNAL OPES_COMMENT ‘“range"
8define SHOW_SIGNAL OPEB_COMMENT “show"
#define SIZE_SIGNAL OPEN_COMMENT “size"
$define TAB_SIGNAL OPEN_COMMENT "tabs"

7.3.4 Default Parameters

Certain Confoin parameters can be altered by directives; others may be changed
only by recompilation. Values for most of these are discussed in Section 3.
Defaults are

8define BREAK_DEFAULT
8define COLUMN_DEFAULT O
$define COUNT_DEFAULT "g"

weow
]

50 92-12

8define GARBAGE_DEFAULT ¥’
$8define OLD_TYPE_DEFAULT ".T_I"
$define POSTFIX_DEFAULT "\\end" "{verbatim}}"

$define POSTVERBATIN "I\n\n"
$define PREFIX_DEFAULT “{\\footnotesize \\begin{verbatim}"
#define PREVERBATIN *\\noindent \\verb|®

#define RANGE _DEFAULT non
#$define SHOW_DEFAULT FALSE
#define TAB_DEFAULT 8
$define TGT_TYPE_DEFAULT ".TeI"

PREVERBATIM and POSTVERBATINM values are not discussed in Section 3, but they
occur in response to the %show directive to provide descriptive markup tag-
ging for displaying commands in the target document. PREVERBATIM contains
\noindent to make the directive print at the left margin, and POSTVERBATIM
contains \n\n to place the ensuing text onto a new line.

Error message strings are defined LOCALly within the error_message() func-
tion (Section 7.10). Access to these is made by indices defined globally:

#define BGN_MATCH_ERR
#define BREAK_ERR
#define CMD_LINE_ERR
#define END_ HH'CH ERR
$define ID_SAME_ERR
#define MEMORY_ERR
#define NO_ACCESS_ERR
Cdog}pp ¥0_COPY_ ERR
sdefine RANGE_ERR
#define SIZE_ERR

WOoONDNE=WN-O

See the narrative for the error_message() function, Section 7.10, for a discus-
sion of why this potentially fragile approach to error messages was taken.

7.3.5 Macro Function

The final definition is a macro for reading a message (msg) from the size-file
stream, removing trailing white space (including newline), and saving it in
malloc-ated memory.

#define FGETSIZE(s) strdup(strtrim(fgets(s, MAX_LINE, size_stream))))

74 Functlon Prototypes for the TOP-C lerary

Earher it was mentioned that several functions from the TOP-C hbrary were
accessed. Confoin provides function prototypes for these,

GLOBAL STRING stratrim(STRING);
GLOBAL STRIEG strdup(STRING) ;
GLOBAL STRING strfnb(STRING);

92-12

GLOBAL STRING
GLOBAL STRING
GLOBAL STRIBG
GLOBAL STRING
GLOBAL STRING

strinsert (STRING, STRING);

. strlvr(STRING);

atrnset (STRING, int, int);
strtcpy(STRING, STRING, int);
strtrim(STRING) ;

Sourece listings for these functions appear in Section 8.

51

52 92-12

7.5 Local Data Structures

Despite the “global data considered dangerous” caveat of structured program-
ming purists (which I consider myself to be, at least in spirit [25]), a few
data structures accessible via the overall environment were considered neces-
sary. These appear in a number of functions where accessing them as formal
parameters would be awkward, unsightly, and distracting. The data are

LOCAL long access_lines;

LOCAL CHAR close [COMMENT _LENGTH] = CLOSE_COMMEST;
LOCAL int column COLUMB_DEFAULT;
LOCAL CHAR ConJoin_file[FILENANE_MAI] = "";

LODCAL leong ConJoin_lines;

LOCAL FILE *+ ConlJoin_stream = §IL;

LOCAL STRING countsignal = COUNT_DEFAULT;

LOCAL BOOL credits = TRUE;

LOCAL CHAR garbage = GARBAGE_DEFAULT;

LOCAL STRING last_acc_lines = JNIL;

LOCAL STRIEG last_CJln_lines = JIL;

LOCAL STRIEG last_tgt_lines = §IL;

LOCAL STRIBG last_use_lines = NIL;

LOCAL CHAR mark([10] = BREAK_DEFAULT;
= OPEN_COMMENT;

LOCAL CEAR open [COMMENT_LENGTH]
LOCAL STRING path_list[NUMBER_OF_PATES];

LOCAL int path_list_size 0;

LOCAL CHAR postfix[MAX_LINE] POSTFIX_DEFAULT;
LOCAL CEAR postverbatim[30] POSTVERBATIN;
LOCAL CHAR prefix[MAX_LINE] PREFIXI_DEFAULT;
LOCAL CHAR preverbatia[30] PREVERBATIN;
LOCAL CHAR range[10) RABGE_DEFAULT;

LOCAL BOOL show
LOCAL CHAR size_file[FILENAME_MAX]
LOCAL CHAR spaces [MAX_LINE]

SHOV_DEFAULT;

LOCAL int tabwidth TAB_DEFAULT;
LOCAL CHAR tgt_file[FILENANE_HNAX]

LOCAL long tgt_lines;

LOCAL FILE * tgt_stream = §IL;

Data items that are not initialized above are set before use in the program.
Many of the variables initialized here are Conjoin directive defaults: columh,
count_signal, garbage, mark (used instead of break, which is a C reserved
word), postfix, prefix, range, show, and tab_width. Default values were
discussed in Section 7.3. Path specifications, named in path directives, will be
entered into the path_list array, whose size, initially zero, is maintained in
path_list_size.

The ConJoin_file string will contain the source file name obtained from
the user-entered command line, and ConJoin_stream will designate the corre-
sponding FILE * stream. The number of lines read from the source is counted
by the variable ConJoin_lines; in the event this file is very large, the type has
been made long.

(11}

92-12 53

The target file name is held in the tgt_tile string, and tgt_stream is the
corresponding FILE #* stream, when opened. The number of lines written into
the target file by %access-es is access_lines, and the total number of lines
written to the target file is tgt_lines, both long. All three numbers of lines
are written to the file named by size_file; these numbers will be read into
the variables last_CJn_lines, last_acc_lines, and last_tgt_lines when
Coxfoin next processes the same source file.

The “announce” option, enabled by an -a entry on the command line, sets
the BOOL variable credits FALSE, thereby suppressing printout of the program
copyright notice, name, and version number in the announce() function of
Section 7.9.

The two string variables preverbatim and postverbatim are unchanged
once initialized in the program, so macro constants could replace them in the
code (see ConJoin_files() in Section 7.17). Since these are references to
IATEX-dependent strings, they are candidates for initialization()-alteration
in future versions, should that appear beneficial. If this need ever arises, it is
an easy matter to replace the variables with macros.

The same is true of the variables open and close, which contain strings that
open and close comments in the target-processor language.

The variable spaces is a string used by ConJoin_files(), putline(), and
timestamp() functions for spacing lines of output to the target file.

54 92-12

7.6 The main() Program
The main() function of the Coxfoin program is fairly short,

/..t‘i‘.‘.“.“‘.O‘.“t.‘..‘.“‘.‘."."‘.“..“.t..“.“‘.‘.......t....l,

main(argc, argv) /¢ Process a ConJoin file to crsate a target file.
Return a FALSE value if no failure occurs, or
TRUE or other nonzerc value if a failure vas
encountered.

/* +/

STRING argv[]; -

{

BOOL failure;
FILE epize_stream;

int i;

initialization(argc, argv); /* terminates if no source file named ./
open_jo_files(); /% terminates on failure in opening files */
access_lines = ConJoin_lines = tgt_lines = O;

timestamp();

failure = ConJoin_files();
failure |= fclose{(ConJoin_stream) | fclose(tgt_stream);
for (i = 0; i < path_list_size; i++)
free(path_list[i]);
free(last_acc_lines);
free{(last_CJn_lines);
free(last_tgt_lines);
free(last_use_lines);
printf(“"Processed:\n%101ld %s source lines\n%101d accessed lines\n"
"¥101d %s total lines writtem\n", ConJoin_lines, ConJoin_file,
access_lines, tgt_lines, tgt_file);
if (size_stream = fopen(size_file, "v"))
{ fprintf(size_stream, v¥1d\n%1d\n¥1d\n¥%.3f\n", ConJoin_lines,
access_lines, tgt_lines,
(double) access_lines / (double) tgt_lines);
failure |= fclose(size_stream);
}

return failure;

The usual main() command-line arguments arge and argv are passed di-
rectly to initialization(), from which a mandatory ConJoin_file name, an
optional target name, and an optional switch to disable the credits announce-
ment are extracted. If a target is not named on the command line, a default
name is made from the ConJoin_file by replacing the source file type with a
default type (currently, .TeX). If no source file is named, or if the source and
target files are the same, initialization() prints a usage message, then ter-
minates the program with an exit value of TRUE. All error terminations return
a nonzero value to the operating system in case Coxfoin has been invoked from
a script (or batch) file whose further processing may be affected.

Both source and target files are opened; if this is not possible, the cause of
the failure and the usage message appear, then Confoin terminates as above. Ifa

92-12 55

target file of that name already exists, it is renamed using an OLD_TYPE_DEFAULT
(see default values in Section 7.3, above).

A header is written by the timestamp() function to the target file before
any processing takes place. This banner stamps the file with the time and date
it was created, and also records the target file name. The name of the source
file is also written, along with an instruction not to edit the target file, but to
make changes in the Coxjoin source instead. (The reason for this is that editing
the target file will not survive the next Confoin-ing of the same source file.)

The main work of the program occurs in ConJoin_files(). This function
reads lines from the source file and examines whether a Coxfoin directive ap-
pears. If so, the action described in Section 3 occurs; if not, the line is copied
to the target file intact.

If an error occurs, either in Confoin-ing or closing files, the nonzero error
value is set for termination, malloc-ated strings from the %path directive and
elsewhere are freed (this may be done automatically by the operating system
upon program termination, and could be redundant). This is followed by a
terminating summary message and by saving the numbers of source, access,
and target lines.

56 92-12

77 'The initialization() Function

/-uon.-ununo.unuuunuuuunouuuuuonuuu“uuuun/
void

initialization(argc, argv)
/* Process command line file names and options, and retrieve

size_file statistics.

/e s/
STRING argvl 1;
{

CHAR meg[MAX_LINE];

STRING s;

FILE sgize_streanm;

command_line{argc, argv, msg);

announce();

if (emsg)

{ usage();
error_message(CMD_LINE_ERR, msg, FALSE);
exit (TRUE); -)

} - .= B

file_defaults(); o '

if (NOT strcmp(ConJoin_file, tgt_file))

{ strcpy(msg, ConJoin_file);
sConJoin_file = NUL;
usage();
exror_message (ID_SAME_ERR, msg, FALSE) ;
exit (TRUE) ;

}

strcpy(strchr(s = strcpy(size_file, tgt_file), 1.2), ".siz");

if (size_stream = fopen(size_file, "r"))

{ last_CJn_lines = FGETSIZE(msg);
last_acc_lines = FGETSIZE(msg);
last_tgt_lines = FGETSIZE(msg);
last_use_lines = FGETSIZE(mag);
fclose(size_stream);

}

}

The initialization() function starts by passing the argc and argv pro-
gram inputs to the command_line() processor, which proceeds through the
argv strings looking for options and file names. Each unrecognized option is
concatenated with any others and recorded in the msg string. (Caution: too
many or long anomalous inputs may cause msg to exceed its allotted width,
and may bomb the program in some implementations. If this appears to be a
problem, future releases may adopt more robust handling of such conditions.)
The first non-option string is assumed to be the ConJoin_£file, the second, the
tgt_tile, and any others are errors, appended to the msg string.

Next, the program announce()-ment is made. If credits has been set
FALSE, the copyright, program, and version printout are inhibited.

If a msg has been returned from initialization, a command-line error has
occurred. usage() prints a short set of operational instructions, and the error

Hm i

92-12 57

message follows. The function returns a TRUE value to the operating system.

The tile_defaults() function supplies a target file name and default file
types if these were unspecified on the command line. If no tgt_file has been
named, the ConJoin_tile name is used, with the file type changed to the target
type default. If a tgt_file is named, but no “” appears in the file name, the
default type is again appended.

If the names of the ConJoin_file and the tgt_file are the same, the usage
message and error are printed and the program again terminates with a returned
value of TRUE. The ConJoin_file string is nulled so that no file line and column
number appear in the error message.

Finally, the function ends by constructing the name of the size_file, and
then retrieving the last-time values of source, accessed, and target lines from it
for use by the %size directive.

58 92-12

7.8 The command_line() Function

/tttttttt.‘tttt“‘t.tt“tt..t.t‘tt.t.‘ttt‘..l““O.tllttt“‘t‘tttt‘.ttt.t/
void
command_line{argc, argv, msg)
/% Process information on the command line: extract ConJoin_file
and tgt_file names, and option -a, when present. Return with
msg set to error conditioms.

VA St of
STRING argvl], msg; e L
{ R
int i;
STRING s;
msg = nL; .
for (i = 1; i < arge; i++)
{ s = strivr(argv(i]);
if («s IS ’=? DR »s IS */?)
{ suitch (es++s)

{ case ’a’:
credits = FALSE;
break;
default:
sprintf(msg + strlen(msg), “Unknown option:
“Ys.\n", argvl[il);

}
sargv[i] = NUL;
}
else if (NOT sConJoin_file)
strcpy(ConJoin_file, s8);
else if (NOT »tgt_file)
strcpy(tgt_file, 8);
else
sprintf(msg + strlen(msg), "Unknown command: %s.\n", 8);

}
if (NOT sConJoin_file)
strcat(msg, "No source file named.\n");

This function first NILs the names of source and target files and the return
message, and then sequences through the command line arguments (excluding
the Oth, which is the program path), one by one. Any argument beginning with
- or / is deemed an option, and only -a is presently acceptable; its appearance

turns off the program, copyright notice, author, and version credits. Any other

attempted option input concatenates an Unknown optiom: siring onto msg.
The first command line argument not deemed an option is taken to be the
ConJoin_file name, and the second, that of the tgt_file. Any others append
Unknown command: siring to msg.
The use of sprintf() to concatenate error strings is a simple way to produce
the formatted msg involving the offense, the offending element, and a newline.
If no source file appears on the command line, this fact is appended to the

erTor msg.

92-12 59

7.9 The announce() Function

If the credits switch is still intact (i.e., TRUE), then the copyright notice, author,
program name, and version are printed; if not, these items are omitted.

JOSEtEIEISEE2E2EIREIEIEESIEELIISIEERINNNSISNEIEIOD e /
void
announce() /* Announce program, copyright, and author.
/* s/
{
int i;

if (credits)
{ for (i = O; =copyrightnotice[i]; i++)
printf("%s\n", copyrightnotice[i]);
printf(*\n\t\t\t ConJoin Program"
"\n\t\t\t %s\n\n", VERSION);

60 92-12

7.10 The error_message() Function

JEEEBEERASEEERIRNEESEEINIRRNNNEISIRRRRETRIRRSIS SRS SIS ISSIISEE204088000000/
void

error_message(n, s, £) /+ Write error message n augmented with string s
to stdout, indicating the current line in the
source file. Repeat the message on the target
file if £ is TRUE.

/e - o/

STRING s;

{ -

LOCAL STRING errmsgl] =
{ “Beginning match string not found: ",
"Break string is invalid: ",
“Command line error: "
“End-match string not found: ",
“Input and output files may not be the same: ",
"Memory insufficient for queue.”,

"No access file found: ",

“"So lines copied from accessed file.",
"Range separator missing.",

“Size command case invalid: “

};

if (*Conloin_file)
printf("\a¥s, ¥1d 1: ¥%s¥s\n",
ConJoin_file, ConJoin_lines, errmsgin], s);
else
printf("%s¥%s\n", errmsg(n], s);
if (f£)
fprintf(tgt_stream, "+++ERROR+*#+ Ys¥s\n", errmsgin], s);

The LOCALized declaration of error messages accessed via globally defined
macro indexes is admittedly fragile and prone to unreliability when later changes
are made in the program’s error handling. It would have been more reliable to
pass the error message directly, as a string argument, rather than as a numeric
index. Each error message, in either case, appears only once in the program,
so there is no storage advantage whether localized or dispersed. I tried it both
ways. I think that the program is more readable with all the messages in one
place. If, in future maintenance, this decision proves faulty, redistribution of
error messages will be considered.

The error_message() function merely prints the selected error message to
stdout, and, if £ has been set TRUE, also to the tgt_streanm in slightly altered
form.

92-12 61

7.11 The usage() Function

/..“‘..‘.".““.‘..O.‘.".‘.i..‘.‘.....‘..‘t"‘. sbéd/
void

usage() /+ Print a message on usage syntax of ConJoin.

/* s/

{

printf("Usage: ConJoin <ConJoin source> <target file> *
"[<options>]\n\n"
"\tSource file type default is .Cln\n"
“\tTarget file type default is %s\n\n"
"Options:\n"
"\t-a Do not amnounce the program.\n", TGT_TYPE_DEFAULT) ;

This function is invoked whenever an abortive usage error has occurred. The
message reminds the user of the syntax that is required, the defaults that apply
to that syntax, and the processing options that are available. It terminates with
a TRUE value returned to the operating system.

62 ' 92-12

7.12 The file_defaults() Function

/ s TS e PrPrrerProrrr T T TI I TIILEL DAL DAL LT LY
void
file_defaults() /+ Supply Conloin file typs .CJn if missing, and
supply missing parts of tgt_file, if any.
/e s/
{
STRING s;

if (NOT (s = strchr(ConJoin_file, ’.?)))
strcat(ConJoin_file, " . CIn");
if (NOT stgt_file)
{ strtcpy(tgt_file, ConJoin_file,
strchr(Conloin_file, ’.’) - ConJoin_file);

if (NOT (s = strchr(tgt_file, 2.7)))
_strcat(tge_file, TOT.TYPE_DEFAULT);

Note that the ConJoin_tile will always have a file type; if one is not pro-
vided by user input, it is supplied in the first if clause. If no tgt_1 ile has been
named, the ConJoin_file name is used, up to the “” (a “. is guaranteed to
appear by the first step above). The length of text copied excludes copying of
the dot.

If the tgt_file bears no “”, the TGT_TYPE_DEFAULT is applied. Thus, the
target file also always has an explicit file type.

92-12 63

7.13 The open_io_files() Function

/....‘ LTI 1]‘.‘.‘..‘..“,‘.O...‘..‘....‘.....‘.'.....‘."/
void
open_io_files() /+ Open ConJoin_file and tgt_file into ConJoin_stream
and tgt_stream. Rename old tgt_file, if amy,
with OLD_TYPE_DEFAULT. Terminate with an error
message via file_open() if files cannot be opened.

/e ./
{

CHAR tgt _bak[FILENAKE_MAX];

FILE » f;

STRING s;

ConJoin_stream = file_open(ConJoin_file, "r");

if (£ = fopen(tgt_file, "r"))

{ fclose(f);
s = strchr(strcpy(tgt._bak, tgt_file), ’.’);
strcpy(s, OLD_TYPE_DEFAULT);
remove(tgt_bak);
rename(tgt_file, tgt_bak);

}

tgt_stream = file_open(tgt_file, "¥");

The first fopen() finds the Confoin source file for reading. If the file cannot
be found, or otherwise cannot be opened, the program terminates at this point
with an error message and a TRUE value returned to the operating system.

The if clause checks to see whether the file named by tgt_tfile currently
exists by opening the file for reading. If it does, a backup file name is created
using the name up to the “.” followed by the OLD_FILE_TYPE. Then the current
file is renamed to this tgt_bak.

The final fopen() opens the target file for writing, with the same termination
consequences as above if the target cannot be opened.

64 92-12

7.14 The file_open() Function

This function is equivalent to fopen(), except that if the file cannot be opened,
an error message is printed with the reason followed by program termination.
The function is only invoked where abortive action is desired in response to an
error. The name is nulled prior to calling error_message to suppress the file
name and location portions of the printout.

JESERARNERESEEEEEEESREFESSIIFFHARARSSEREESERESRINEEEEIIREERESNS000 00000/
FILE =
file_open(name, use)
/* Open the name file for given use, and return tqlulting stream.
If file cannot be opened, print reason, and abort processing.
- ./

/e
STRING name, use;
{
CHAR s[MAX_LINE];
FILE * straax;

if (BOT (stream = fopen(name, use)))

{ strcpy(s, name);
sname = FUL;
strncat(strcat(s, ": "), strerror(errno), MAI_LINE - 1);
error_message(CMD_LINE_ERR, s, FALSE);
exit(TRUE) ; -
} .

return stream;

L ———

Rl

92-12 " 65

7.15 The timestamp() Function

The purpose of the timestamp() function is to annotate the target file being
written with informative and warning commentary. The information consists of
the target file name (tgt_file), the current time (accessed via ANSI standard
functions time() and localtime()), and the name of the ConJoin_file that
created it. The warning is simply an exhortation not to revise the file. Nothing
dire happens if this file is altered, but the user probably meant for the changes
to have been made in the original source file. When Coxnfoin-ed again, changes
in the target file will be lost.

/OSSR EAESRRREE RS IRRSARRINIRRSREEN s (1T stusbistass/
void
timestamp() /¢ Write the tgt_file name and a time-stamped header with
a revision varning onto the tgt_stream.
/e -=+/
{
time_t clock;
CHAR atime[26],

bar[MAX_LINE],
blanks [MAX_LINE];

STRIEG sp, text;
struct tm ¢ t;
int n;

n = strlen(open) + strlen(close);

strnset(bar, ’=’, PAGE_WIDTH - n);

strnset(blanks, ’ ’, PAGE_WIDTH - n - 2);

time(&clock);

t = localtime(&clock);

stratrim(strcpy(atime, asctime(t)));

sp = right_fill(atime, strlen(tgt_file) + n + 5);

fprintf(tgt_stream, "%s (%s)%s(%s)%s\n", open, atime, sp,
tgt_file, close);

fprintf(tgt_stream, '"¥%s¥s¥s\n", open, bar, close);

text = “%s| This file was ConJoin-ed from input file %s.%s|%s\n";

sp = right_fill(text, strlen(ConJoin_file) - mn - 7);

fprintf(tgt_stream, text, open, ConJoin_file, sp, close);

fprintf(tgt_stream, "%s|[%sl%s\n", open, blanks, close);

text = "Ys| DO BOT REVISE THIS FILE.%s|%s\n";

fprintf(tgt_stream, text, open, right_fill(text, m - 7), close);

fprintf(tgt_stream, '"¥%s|%s|¥%s\n", open, blanks, close);

text = "Yis| To make revisions, modify the original file.%s]%s\n";

fprintf(tgt_stream, text, open, right_fill(text, n - 7), close);

fprintf(tgt_stream, "Ys¥s%s\n", open, bar, close);

tgt_lines += §;

The only tricky part of this function is in correctly creating the flush-right
time-stamp box. The function strnset() from TOP-C creates bars for the
top and bottom of the box, while right_£i11() provides the correct number of
blanks for formatting. Even though the global variable spaces is not referenced

66 92-12

within timestamp(), it is changed as a side-effect of right_2i11() (see the
discussion in Section 7.16, below).

The reason for using stratrim() before copying asctime() to atime is that
the string returned by asctime() is terminated in a newline character, and it
is necessary to remove the trailing white space for proper formatting.

The tgt_lines variable is finally augmented by the number of lines written
onto the target file by this function.

As an example, the header written by timestamp() on the target file com-
prising the body of this report is

% (Fri Jul 31 11:20:39 1992) (cj_body.Tel) *
:I This file was ConJoin-ed from input file cj_body.Cln. |
é: DO ¥OT REVISE THIS FILE. :
:: To make revisions, modify the origimal file. :

%

92-12 67

7.16 The right_fill() Function

/‘..O‘.0.‘..‘..O‘“.‘it‘.“.t..‘.“‘.‘.‘.‘....".t‘......“.0“.‘.‘...“‘/

STRING
right_2ill(s, n) /+ Generate spaces as a blank string of length
PAGE_VIDTE - n. Return spaces.
/* ./
STRING s;
{
return strnset(spaces, ’ ’, PAGE_WIDTH - strlen(s) - n);
}

This simple function perhaps exemplifies the practice of undue parsimony in
programming: the use of an existing, idle global data structure by a function it
was not initially intended to serve. Throughout the remainder of the program,
spaces carries the indentation prefix for lines copied from accessed files. But
here, before the scanning of the source even begins, it is free for other duty.
Luckily, its name fits both usages. This general practice can lead to very fragile
and hard-to-read code if overdone. Even though this module is only invoked
from a single function of the program, and even though it is very tiny, the
program modularity is less than optimum.

This function should be noted as a possible target for later perfective main-
tenance.

68 92-12

7.17 The ConJoin_files() Function

This function processes the Confoin source file to produce the target file via the
directives described earlier, in Section 3. The algorithm is straightforward:

/..‘“.‘0“‘.““‘..“.....‘..O".“t.....“‘.““.‘ .‘..‘.O‘..“......‘../

ConJoin_files() /% Process the Conloin source file and create the
expanded target file. Return a nonzero value
if an error occurs, or a O value if nome. Count
ConJoin_lines, access_lines, and tgt_lines.

/e ./
{
BOOL error;
CHAR hold[!ll_LIlﬁ],
line[MAX_LINE];
STRIBG extract;
error = FALSE;
sspaces = NUL;)
for (ConJoin_lines = O; fgets(line, MAX_LINE, ConJoin_stream);)
{ ConJoin_lines++;
tgt_lines++;
if (NOT sstrfnb{line)}
{ fprintf(tgt_stream, "%s", line);
continue;
}
if (strstr(line, open))
{ if (extract = strstr(line, ACCESS_SIGNAL))
strcpy(hold, line);
error |= directive(extract, line);
}
else
extract = NIL;
fprintf(tgt_stream, "%s", line);
if (extract)
error |= access{hold + (extract - line) +
strlen(ACCESS_SIGNAL));
}
return error;
}

The error switch is set FALSE and spaces is NUL-led in preparation for
processing. The loop iteratively reads in a string line until an end-of-file or
reading error occurs. Each line read in augments the number of ConJoin_lines
and tgt_lines. All source lines copy into the target file in one form or another.
If a line is blank, it is immediately written to the target file, and processing
continues.

Each line is prescanned to see if it contains a Coxfoin directive, as indicated
by the appearance of a comment opener. If one exists, then the line is checked
for the appearance of an ACCESS_SIGNAL, whose location is saved in the variable
extract. If line is recognized as an %access it is saved in the hold buffer.

W veRem VA 0|

92-12 69

Thereafter, the line is processed as a possible directive. A non-NIL extract
value sent to directive() is a signal that the directive is an %access and is
only to be prepared for showing, if the show mode is in effect. The remainder
of the processing of an %access directive takes place after the line has been
written on the target.

If no comment opener was detected, extract is set to NIL so no access()
action takes place later.

The line either prints as it was when read in, or as altered by directive().
Only %size and %show directives cause alterations to the line; %size inserts a
numeric value into the line, and %show surrounds the line with preverbatim
and postverbatim target processor commands when turned on.

If extract is non-NIL, the hold line is processed as an %access directive
(the line will have been corrupted in the show mode). The position after
the %access signal in hold is computed from its location in the line prior to
directive() processing.

Processing %access directives is delayed with respect to processing of other
directives so that transcribing the extracted text can follow the copying of the
directive itself onto the target file.

On completion of scanning the source file, the function returns the compound
results of error detection.

70 92-12

7.18 The directive() Function

Because of its length, this function will be described in increments. Overall, the
structure is comprised of three communicating parts:

e declaration and initialization
o directive action
o preparation for showing

The first action is to preserve the incoming text by copying it into the 1ine
string, which is processed instead. However, text will also be processed if it
contains a %size directive or if the show condition is TRUE. The text string is
later written onto the target file by the invoking function.

/“‘tt‘tt“.t.‘.‘.....““‘..O“"O.ii“‘iii.i....‘.t““...‘..‘.“.““t/

BOOL
directive({extract, text)

/* Process ConJoin directives that may appear in the text string.
If extract is non-NIL, the text contains an access directive
that may only need to be prepared for shov-ing. In case of
Ysize, write the appropriate values into text. Insert)
preverbatim and postverbatim into text if show is, or has just
turned, TRUE. Return TRUE if a bad %size case appears; FALSE

otherwise.
/* , o/
STRIBG extract, text;
{
STRING =,
t;
CHAR

K »
line[MAX_LINE];
BOOL change_show;

strcpy(line, text);

The next, and largest, segment of the function is a 12-way if...else if
__else if ...directive-selection structure. If extract is non-KIL, a delayed
Yaccess directive is in effect, so no action takes place in this step. The t pointer
is set to the location of the beginning of the directive in the line.

if (extract)
t = line + (extract - text);

Many of the other directive actions simply record parameter values:

else if (t = strstr(line, BREAK_SIGNAL))
strext (mark, t + strlen(BREAK_SIGEAL));

else if (t = strstr(line, COUNT_SIGNAL))
strext(countsignal, t + strlen(COUNT_SIGEAL));

o HEmAE A]|

92-12 71

else if (t = strstr(line, POSTFIX_SIGNAL))

strext (postfix, t + strlen(POSTFIX_SIGNAL));
else if (t = strstr(line, PREFIX_SIGNAL))

strext(prefix, t + strlen(PREFIX_SIGEAL));
else if (t = strstr(line, RANGE_SIGNAL))

strext (range, t + strlen(RANGE_SIGNAL));

else if (t = strstr(line, GARBAGE_SIGNAL))
{ if (g = sstrfnb(t + strlen(GARBAGE_SIGNAL)))

garbage = g;

else if (t = strstr(line, TAB_SIGEAL))
tabwidth = atoi(t + strlen(TAB_SIGNAL));

In each of these, the remainder of the directive after the detected SIGNAL de-
termines the new value of the parameter (white space suppressed). The param-
eters affected are mark, countsignal, garbage, prefix, postfix, range, and
tabwidth.

A similar action takes place with path_list items, except each path ex-
tracted from the directive is saved in malloc-ated memory by strdup() of
Section 8.2.

else if (t = strstr(line, PATH_SIGEAL))
{ path_list[path_list_size++] =

strdup(strext(t, t + strlen(PATE_SIGNAL)));
}

If a %column directive appears with a positive value, the spaces string is
filled with an equal number of blank characters; otherwise spaces is nulled.

else if (t = strstr(line, COLUMN_SIGNAL))
{ column = atoi(t + strlen(COLUMN_SIGNAL));
if (column > 0)
{ stronset(spaces, ’ ’, column);
column = O;
}
else
sspaces = NUL;
}

A Y%show directive line is examined for on or off alternatives.

else if (t = strastr(line, SHOV_SIGEAL))
{ s = strlur(stratrim(t + strlen(SHOW_SIGNAL)));
if (¥OT strcmp(s, “on"))
change_show = TRUE + TRUE; °
else if (NOT strcmp(s, "off"))
change_show = TRUE + FALSE;
if (change_show AND EOT show)
show = change_show - TRUE;

72 92-12

Either on or off causes change_show to switch from 0 (FALSE) to 1 (TRUE +
FALSE) if show goes off, or to 2 (TRUE + TRUE) if show goes on. Unrecognized
show alternatives are ignored. If %show has called for action (change_show has
been set to a nonzero value), and if show is currently off, then whatever action
was called for takes place immediately, in case the directive was to go on.

The remaining directive, %size, causes the action

elae if (t = strstr(line, SIZE_SIGEAL))
{ do
{ »t = FUL;
switch (s(t = strfnb(t + strlen(SIZE_SIGNAL))))
{ case ¢’:
case C’:
s = last_Cln_lines;
break;
case ’a’:
case ’'A’:
s = last_acc_lines;
break;
case 'r’:
cass 'R’:
s = last_use_lines;
break;
case 't’:
case ’T’:
s = last_tgt_lines;
break; S
default:
s = uon;
error_message(SIZE_ERR, text, FALSE) ;
return TRUE;
}
sprintf{text, "¥s¥ksis", line, s, ++t);
} while (t = strstr{(strcpy(line, text), SIZE_SIGNAL));

}

Nulling the character where the SIZE_SIGNAL was found truncates the line at
that point, removing the %size directive. The character after the SIZE_SIGNAL
causes the corresponding number of lines saved in the size history file to replace
the %size directive in the reconstructed text by sprintf(). The do loop
iterates until no further %size directive is detected on the line.

The final segment of the directive() function prepares the line for possible
explicit display in the target document. It does this by inserting pre- and post-
verbatim environment commands around the directive. String t will be non-NIL
if a directive was detected.

if (t AND show) I
{ strinsert(text + (t - line), preverbatim);
if (sclose AND (t = strstr(text, closse)))
strinsert(text, postverbatim);

else

| TN

(LT, T AT

L S B N VTN T [N

L R Y O

73

92-12
strcat (stratrim(text), postverbatim);
if (change_show)
shov = change_show - TRUE;
}
return FALSE;
}

If no directive was found in text, the function terminates with no action
taken.

74 - 92-12

7.19 The strext() Function

The purpose of this function is to extract the substring up to the closing com-
ment mark (if any) and copy it into another, trimmed of leading and trailing
white space.

/..‘i““i.iiiiiiii.t.."0‘t.tt‘...t“““‘“““‘t“‘.‘.“0..‘0.'0...‘.‘/

STRING
strext(s, t) /+ Extract string t up to the close-comment string, if closs
is not null, or to the end of t if null, into s. Remove
leading and trailing blanks from s and return s.
/* - o/
STRING s, t;
{
STRING p;
if (eclose AND (p = strstr(t, close)))
strtcpy(s, t, p - t);
else
strcpy(s, t);
. return stratrim(s);
}

[

(R IRTE T 1

P AP SRS ORI |) |

92-12 75

7.20 The access() Function

e T P T P P S . o= s e/
BOOL
access(buffer) / Process the text extraction operation specified

in the line buffer to the tgt_stream. Retumn
FALSE if no error, TRUE if an error occurred.
/e o/
STRING Dbuffer;
{

STRIBEG bgn_match[MAX_COBTEIT + 1],
end_match[MAX_CONTEIT + 1];
CHAR module[FILEBAME_MAI];
BOOL errTor;
FILE * modulestream;
int bgncount,
bgnoffset,
endcount,
endoffset,
1;

strext (buffer, buffer);
if (match_parameters(buffer, module, bgn_match, end_match, tbgncount,
&bgnoffset, &endcount, 2endoffset))
return TRUE;

if (NOT (modulestream = open_access(module)))
{ error_message(NO_ACCESS_ERR, module, FALSE) ;
return TRUE;
}
printf("%saccess %sis\n", open, buffer, close);
if (sprefix)
fprintf(tgt_stream, “%s\n", prefix);
error = scan_to_bgn_match(modulestream, bgn_match, bgncount,
bgnoffset);
error |= copy_to_end_match(modulestream, end_match, endcount,
endoffset);
for (i = O; bgn_match[i]; i++)
free(bgn_match[il);
for (i = 0; end_match[i]; i++)
free(end_match[i]);
error |= fclose(modulestream);
if (epostfix)
fprintf(tgt_stream, "%¥s\n"”, postfix);
return 6rror;

The first step of the algorithm removes the trailing comment signal and
leading and trailing white space from buffer. The second step extracts the
name of the file to access and the search parameters; if no error is encountered,
the algorithm proceeds.

The third step opens the module stream; if the extracted file name is not
found in the current directory, each of the directories named in %path directives
is searched. If the file is found and opened successfully, the next step lists

76 92-12

the name and extracted parameters by using current settings of the Y%access
separator strings.

Next begins the actual access: If there is a prefix, it is written into the tar-
get file. The access file is searched for the beginning match conditions described
in Section 3.2, and thence copies until the ending match conditions have been
met. Finally, the access file is closed, the postfix is written to the target file,
and the function terminates, returning the indicator of any error condition that
may have occurred.

Note: the error expression contained in the three statements near the end of
the function should not be combined into a single statement because the order
of evaluation of functions is unspecified in the ANSI standard.

L LT T

92-12

7.21 The match_parameters() Function

/“.“i.... (1] > L 1.2O./
BOOL
match_parameters(buffer, module, bgn_match, end_match, bgncount, bgnoffset,
endcount, endoffset)
/% Extract access module name, and beginning and ending access
conditions. Return TRUE if ap error is encountered, FALSE

othervise.
/* »/
STRING buffer, bgn_match[], end_match[], module;
int sbgncount, ¢bgnoffset, sendcount, sendoffset;
{
CHAR line[MAX_LINE];
STRING =,
t;
if (§OT (s = stratr(strcpy(line, buffer), mark)))
{ error_message(BREAK_ERR, buffer, FALSE);
return TRUE;
}
stratrim(strtcpy(module, line, s - line));
if (NOT («(t = strfnb(s + strlen(mark)))
AND (s = strstr(t, range))))
{ error_message(RANGE_ERR, buffer, FALSE);
return TRUE;
}
g = 'U]_;
s += strlen(range);
if (access_condition(t, bgn_match, bgncount, bgnoffset, 1))
return TRUE;
if (access_condition(s, end_match, endcount, endoffset, -1))
return TRUE;
return FALSE;
}

The first steps above extract the name of the file to access into module by

77

locating the %break mark (signaling error if none is found) and copying that

portion of the input buffer.

The next segment sets t to the starting-match condition, beginning just
past the mark location and extending up to the range marker. (If no marker is
present, the function terminates returning an error indication.) Putting NUL in

place of the marker isolates the starting match specification string.

Note that string s has been positioned just past the range marker, and

therefore points to the end-condition string. The access_condition() function

invocations extract the context strings, context count, and offset values for the

matches to be made in scanning for the beginning match and copying to the

ending match.

T

78

7 92 The access_condition() Function

Access match conditions are extracted from the string buffer parameter. The
context strings are copied into the match dynamic string array, but count and
offset values are first set by locating these terms and removing them from
the buffer. Removal merely requires seeking for countsignal, +, and -
converting substrings to integer values, and finally inserting NULs to isolate the

match-string portion of the condition.

/.“.“‘.3“‘..“0“““

BOOL

access_condition(buffer, match, count, offset, init)

I

/e Extract access condition from buffer. Set offset to init if
no offset is parsed in the buffer. Return TRUE if an error

is encountered, FALSE otherwvisas.

STRING buffer, match[];

int

{

scount, soffset;

int n;
STRING s, t;

soffset = init;

scount = 1;

s = stratrim(buffer);

if (t = strstr(s, countsignal))

{ scount = atoi(s = t + strlen(countsignal));
ot = NUL;
}
if ((t = strchr(s, ’+’)) OR (¢t = strchr(s, =N
{ soffset = atoi(t);
*t = IUL;
}
else if (isdigit(sbuffer))
{ soffset = atoi(buffer);
sbuffer = NUL;
}
s = buffer;
for (n = 0; *s AND n < MAXI_CONTEIT; n++)
{ if (t = strstr(s, mark))
{ st = NUL;
t += strlen(mark);
}
match[n] = strdup(strtrim(s));
s = strfnb(t AND st 7 t : s + strlen(s));
}
if (n > O AND match[n - 1] IS NIL)

return TRUE;

match[n] = NIL;
return FALSE;

t.“"‘.0.“‘...““‘.iiii.“.‘....‘.‘...“‘..“./

92-12 79

7.23 The open_access() Function

The open_access() function attempts to open the file named as the param-
eter. Failing this, it attempts opening this file in each of the directories previ-
ously named in %path directives, until successful. Then, the open file stream
is returned. If unsuccessful, a NIL value is returned to the calling procedure,
access(), of Section 7.20.

/ senens sessnss . e seassenssss/
FILE »
open_access(file) /% Open the specified file for reading.
/e ./
STRING file;
{
int i;

CHAR path(FILENAME_MAI];
FILE * stream;

strcpy(path, file);

for (i = O; NOT (stream = fopen(path, “r")) AND i < path_list_size; i++)
strcat(strcpy(path, path_list[il]), file);

return stream;

80 92-12

7.24 The scan_to_bgn_match() Function

/‘....‘t‘.“...tt.“‘..O“..‘0.0.t"‘.“..‘“‘!.!..!‘..t.“...‘.“.‘...‘./

BOOL
scan_to_bgn_match(modulestream, bgn_match, bgncount, bgnoffset)
/* Scan the modulestream for the beginning match condition and

return positioned to access the first line to be copied.
. N

Joe-
FILE *+ modulestream;
STRING bgn_match[1;- I

int bgncount, bgnoffset;
{
fpos_t fp,
fpqueue[MAX_Q];
int n,
offset,
qex;
BOOL error;
long qe;

CHAR text [MAX_LINE];

n = error = offset = O;
qe = -1;
while (NOT fgetpos(modulestream, &fp) AND
fgets(text, MAI_LINE, modulestream))
{ qex = (int)(++qe NOD MAX_Q);
fpquene[qex] = £p;
if (bgn.match[n])
{ if (NOT strstr(text, bgn_match[n]))
continue;

if (bgn_match[++nl)
continue;

if (--bgncount <= 0)

{ if (bgnoffset <= 0)

{ qex = (int)((qe + bgnoffset) MOD MAI_Q);
fsetpos(modulestream, kfpqueue{gex]);
break;

}

else if (bgnoffset—- IS 1)
break;

}
else
n=0;
}
else if (NOT bgnoffset)
{ fsetpos(modulestream, &fpquenelgex]);
break;
}
olse if (++offset >= bgnoffset)
break;
}
if (bgn_match[0] AND bgn_match[n])
{ error_message (BGN_MATCH_ERR, bgn_match{n], TRUE);

DR R | 1

FAF TR W

92-12 81

error = TRUE;
}

return 6rror;

In this algorithm, gb and ge are the queue-beginning and queue-ending in-
dices of lines read from the access file. If the beginning offset is negative, then
when the beginning match and count conditions are reached, the beginning line
is located from the queue. The lines themselves are not queued, but rather their
positions in the file are stored in a file-position-queue, tpqueue[]. Since the
queue length is limited to MAX_Q elements, it is necessary to treat the queue
circularly, indexed by integers qbx and qex.

Until the beginning access condition is met, the file positions and text lines
are read into £p and text, respectively. The position is saved in fpqueue [qex],
while text is examined for beginning match conditions.

One will note that the copy_to_end_match() function (Section 7.25) main-
tains a text queue, rather than a file position queue. That alternative was also
considered here to make the two functions more similar. The speed trade-off
between the two alternatives—i.e., constantly allocating, copying, and freeing
strings into and from the queue vs. the one-time repositioning of the file—
seemed moot. The use of the text queue, however, required that the copying
function also needed access to the queue. Manipulation of the queue in copy-
ing seemed less straightforward and much different from this scanning function.
Simplicity and similarity finally won out.

As long as the bgn_match[n] string is non-null, there is a match to be found;
otherwise, the string matching condition is considered satisfied. Whenever a
match is satisfied, its count is decremented, and the next occurrence of the
bgn_match array is sought (at n = 0).

Upon reaching the context and count conditions, if the beginning offset was
zero or negative, the queued location of the line read bgnoffset lines earlier
is used to reposition the input file to next read at the specified line. The loop
breaks at this point and the function terminates.

If the beginning offset value is positive, then bgnoffset is decremented to
count (and thereby skip) the line. If the offset (before the decrement) is one,
then the loop breaks and the function terminates, as the end matching condition
has been fulfilled.

If the function began without a context to be matched and no offset, then
the file is reset to the beginning, and the function terminates. If there was a
beginning offset only, an offset variable counts up until the specified offset is
reached before the loop is broken.

If, after the loop terminates, if bgn_match[0] and bgn_match [n] both are
un-nulled, this is an indication that a match was to be found, but was not. An
error message results in this case.

82 92-12

7.25 The copy_to_end_match() Function

The copy_to_end_match() function is again long enough that a segmented
presentation of its operation is warranted. The algorithm is similar to the
gcan_to_bgn_match() function earlier described (Section 7.24), except that
copying replaces scanning. The function and data declarations are

/-ucnoon”u-noonnotuonnu;nnuun“ununonnnciuuo"u/ ,

BOOL . - s o TN .

copy_to-ond.latch(noduloltrcal, end_match, nﬁ@éogg!lr 4) o

/* Copy lines from modulestream to tgt_stream, up until the end-match
condition is satisfied. Return TRUE if am error was encountered,

printing the appropriate error message; return FALSE othervise.

./

feset)

/e
FILE smodulestream;
STRING end_match[];
int endcount, sendoffset;
{
int count,
error,
offaet,
n,
qbx,
qex;
long qb,
qe;
CHAR text[MAX_LIBE];
STRING txqueue[MAY_Q];

The variables gb, ge, qbx, qex, and error operate as they did earlier; count
is there to measure whether any copying actually takes place. Unlike the ear-
lier function, which maintained a file position queue, this function maintains
a real text queue, txqueue[], because excessive disk thrashing would re-
sult if a file-position queue approach function were taken, as was done in the
scan_to_bgn_match() function described earlier (Sec 7.24).

The function is otherwise very similar in structure to the scan function. The
end of the queue is initialized to —1 because qe is incremented before it is used;
therefore the first element read will be inserted into queue slot 0. A loop gets
(and counts), queues, and copies text strings from the modulestrean. When
an end matching context has been specified on entry, end_match[n] will be NIL
at the exit from the loop if the condition has been fulfilled. Hence, a non-NIL
match string signals an error condition. Similarly, a zero count means nothing

was copied—another error condition.

qe = -1;
n=0;
for (count = error = offset = O; fgetstr(text, modulestream); count++)

{ if (endoffset <= 0)

T TR R IR LT LT T N T T

G TV RENTIR N

92-12 83

}

if (end_match[0] AND end_match[n])

{ error_message(END _MATCH_ERR, end_match{n], TRUE);
error = TRUE;

}

if (NOT count)

{ error_message(NO_COPY_ERR, ", TRUE);
error = TRUE;

}

return €rror;

There are several if-clauses inside the loop above. The first is exercised
when there is a negative endoffset

{ if (endoffset <= 0)
{ qex = (int)(++qe MOD MAX_Q);

if (NOT (txqueue[gex] = strdup(text)))

{ error_message (MENORY_ERR, "', FALSE);
exrror = TRUE;
break;

}

if ((qb = qe + endoffset) >=0)

{ gqbx = (int)(qb MOD MAX_Q);
free(putline(txquene[qbx]));
txqueue{gbx] = NIL;

}
if (end_match[n])
{ if (NOT strstr(text, end_match[n]l))
continue;
if (end_match[++])
continue;
if (~-endcount <= Q)
{ while (qb <= qe)
{ qbx = (int) (qb++ NOD MAX_Q);
free(txqueue[gbz]);
}
break;
}
else
n=0;
}

}

A zero or negative endoffset causes the text to be inserted into the next queue
slot (if there is no memory error). If the queue has reached a length such that
the line at the beginning of the queue is ready to be transferred into the target
file, it is copied via putline() (Section 7.27), its memory allocation is freed,
and its former queue element set to KIL.

If an end_match[n] context exists and appears within the text string, the
next end_match[++n] context match is sought. When all individual end matches

84 92-12

have been made, andcount is decremented and the next series of context matches
are begun. When the count reaches zero, any enqueued text is freed, and the
loop terminates.
The remaining if-clauses inside the loop operate when endoffset is posi-
tive:
else if (end_matchn])
{ putline(text);

if (NOT strstr{text, end_match[n]))
continue;

if (end_match[++n])
continue;

if (--endcount > 0)

n=0;
}
else if (offset++ < endoffset)
putline(text);
else

break;

In the first of these clauses, if there is an unsatisfied ending string match, then
the text is put to the target file and the line is checked for a string match. If
there is a match, and if further matches are pending, the process continues.
Otherwise, the endcount is decremented. If there are still more contexts to
match, n is reset to 0, and the next context is sought. When endcount reaches
zero, the end-matching context is fulfilled.

Once the end string match condition has been satisfied, the offset is checked;
if that part of the end condition is unfulfilled, the text copies into the target
file and is counted in offset. Finally, on reaching the goal endoffset, the end

condition is satisfied, and the loop terminates.

WA AT

| PO TIRRMAN 11 1 \i IR RN

W

92-12 85

7.26 The fgetstr() Function

The purpose of the fgetstr() function is to obtain a string from a named
stream, replace tab characters in that string with spaces, and pass that string
back to the calling function, copy_to_end_match() (Section 7.25). In addition,
fgetstr() removes trailing white space and replaces the ending newline.

An entire line at a time is fetched from the stream, unless an end-of-file or
anomalous condition has been reached. As each character of the input stream is
scanned two checks are made: If a scanned character is a tab (ie., ’\t?),aspan
of spaces is inserted to align the next character on a multiple of the tab_width.
If a scanned character is not a space or other printable character, the garbage
character is substituted in its place. Otherwise, the character is written into
the parameter string intact.

/“.‘.“t“‘.‘i‘i#t‘..“...‘.“.‘..i‘...‘..‘....‘....“‘....“...“t.‘.l‘/

STRING .
fgetstr(s, stream) /¢ Get string s from the named stream with
TiBs replaced by spaces, and return it.
/* - —s/
STRING s;
FILE * stream;
{
CHAR c,
p[MAX_LINE];
int i,
hH
STRING q,
t;

if (NOT (q = fgets(p, MAX_LIBE, stream)))
return NIL;

for (t = 8, i = 0; c = sq++;)

{ it (c IS ’\t?)

{ j = tabwidth - (i MOD tabwidth);
while (j--)
{ stée = 2 I

+4i;

}
continue;

}

alse if (NOT (isspace(c) OR isprint(c)))
¢ = garbage;

*t+4+ = C;

i+

}

«t = JUL;

return strcat(strtrim(s), "\n");

86 92-12

7.27 The putline() Function

The putline() function writes its stting argument, column-adjusted in accord
with the last %column directive, to its stream argument, provided that the string
is not null and contains a newline. Null lines and lines not terminated in newline

are both considered anomalous.

/9000000024440 IARRERESSSEERERESIERRREEINEIENINNN LN ity o/
STRING
putline(s) /+ ¥rite the the string s onto the output stream, properly
columnated. The string is presumed to exist and comtain
a nevline. Count the output both as one of the
access_lines and tgt_lines. -
/= ./
STRING s;
{
STRING ¢t;
if (s AND (t = strchr(s, ’\n”)))
{ t =g + (column € 0 ? min(-column, t - 8) : 0);
fprintf(tgt_stream, “%s%s’, spaces, t);
access_lines++;
tgt_lines++;
}
return s;
}

The local string variable t locates the newline, so t - s is the string length,
not counting the newline. If the column level is negative, the input string is to
be left-truncated by —column characters (the spaces string in this case will have
length 0, set in response to the %column directive). This is done by starting the
actual printing at the proper offset later in s. In order that the s not be accessed
beyond the end point, the lesser of the two length alternatives is assigned to
t. If column is zero or positive, spaces has been set to this length either by
default or by a %column directive; t is set to s in this case.

The writing of t preceded by spaces thus achieves the desired formatting:
For negative column values, spaces is null, and if column is zero or positive,
spaces has this width.)

The access_lines and tgt_lines values are augmented to count the line
written both as one emanating from the access source as well as one written to

the target file.

[}

92-12 87

8 TOP-C LIBRARY FUNCTIONS

Several calls to functions in my personal library appear in the Conjoin program.
Listings of these appear in this section for informational and completeness pur-
poses only. None of these falls under the jurisdiction of the JPL copyright notice
placed on the source files or the copyright notice printed in this report.

These files all access appropriate #include files to assure that each ANSI
and TOP-C function reference conforms with its prototype declaration.

8.1 The stratrim() Function

The stratrim() function was patterned after the atrim function of Clipper: it
removes all leading and trailing white space of a given string and returns the
result.

/..‘t“‘.....l‘...“‘.‘....‘..‘.O.‘““‘.l.‘..‘.“‘..0“........0‘.‘.0.‘./

STRING
stratrim(s) /+ Trim all white space from s, leading and trailing, and
then Treturn =.
/e »/
STRING s;
{
FAST STRING p;
p = strfnb(s);
strtcpy(s, p, strlen(p));
return strtrim(s);
}

First, p advances to the first nonblank character of s; then memmove() copies
P into s, which left-justifies s. Finally, trailing white space is removed from
the end of the string. Copying uses memmove() because it properly handles
overlapping areas of string arguments.

88 92-12

8.2 The strdup() Function

This function originally appeared in Kernighan and Ritchie [26] under the name
strsave(). The same function later appeared in an ANSI C Standard draft
document and in various C run time libraries under the name strdup(). My

current Standard draft [27) has deleted this function, so I wrote my own, to
make sure I could port things from one C to another.

/“‘tt“....“‘.“‘..““O..“‘0#‘..‘OO“.‘..“‘...“‘“‘..“‘..“O‘t‘l‘./

STRIBG
strdup(s) /% get enough storage for s and put s there,
return pointer to the string, or BIL if mo
string space.
/e o/
const STRING s;
{

STRING p = NIL;

if (s AND (p = malloc(strlen(s) + 1)))
strcpy(p, 8);
Teturn p;

2 LU TRINEL O L L T T

TEOAmEEEmE]

mugr

92-12 89

8.3 The strfnb() Function

This simple function just skips any white space that appears at the beginning
of the string parameter and returns a pointer to the first ponblank character
(or to the NUL, if no nonblanks exist, or returns NIL if the given string does not
exist). The function is similar to stratrim(), but the latter actually removes
white space; strtab() does not.

/"..i..“t....‘.“."..‘“.‘.“..‘..i.“.‘...‘.“-—- ‘/
STRING
strfnb(s) /% Return a pointer to the first nonblank character
in string s, or to the NUL if s is empty.
/e ./
STRING s;
{
if (s)

vhile (isspace(es))
Lot H
return s;

90 ' 92-12

8.4 The strinsert() Function

This function inserts one string at the beginning of another. The algorithm is
simplified using memmove(), which is guaranteed to transfer characters despite a
possible memory overlap. First the contents of 8 are shifted right by the length
of t. Moving one character more than the length of s ensures that the s will
still end in NUL. Then, t is inserted at the beginning of s:

/‘0.‘.““‘.“.“‘“‘.‘tt““..“‘...“.‘.‘t....“*“"i...““.“.‘.t.../

STRING
strinsert(s, t) /+ Insert string t im string s at the beginning.
Return a pointer to s.
/* s/
STRING s, t;
{
size_t n;
memmove(s + (n = strlen(t)), s, strlen(s) + 1);
mamcpy(s, t, n);
return s;
}

It is noteworthy here that the memcpy() function copies only the n characters
of t, and not its terminating NUL, into 8.

r

RN I LT

! IR L (LA VLRGN, T TR T

11 AR ey

92-12 91

8.5 The strlwr() Function

This function rewrites the given string using lowercase alphabetic characters
wherever capitals appear. Some C libraries contain this non-ANSI function,
while others do not. To promote portability, I wrote my own version.

/S80S E0ABS448EREEEEFESIEILEEAIIEEIORES S crnnan sessssesenes/
STRING
strler(s) /% Set 8 to lowercase and return s.
/e */
STRING s;
{
STRING p;
if (s)

for (p = s; sp = tolowar(sp); p++)
return 8; '

92 92-12

8.6 The strnset() Function

This function replicates a given character a specified number of times into a
string parameter, and returns a pointer to this string. This function also appears
in some C libraries, but not in all, so I included it in mine, just to make sure.

/.‘.“..“‘t“““...‘“t.‘.t“.‘..t..‘.O...“‘..“.““.“O.‘.““....‘./

STRING
stmmset(s, c, n) /+ Return string s composed of n character c’s.

./

/e
STRING s;
size_t n;

{
STRING p;

for (p = 8; n== > 0; sp+é¢ = (CHAR) <)

H
«p = TUL;
return s;

92-12 93

8.7 The strtcpy() Function

I wrote strtepy() to correct a misconception I had about what the ANSI
strncpy() function does. I believed that it copied one string into another for
a maximum of n characters, returning the copied string. It does not. Rather,
stracpy(s, t, n) copies n characters from string t to string s and then stops.
If no terminating NUL is encountered, none is copied. Thus, if n is greater than
the length of the old s, but shorter than the length of t, then the NUL in 8 is
overwritten and none is copied from t. The result is that s has been turned into
garbage. My strtcpy(), on the other hand, is a truncated copy that always
puts in a terminating NUL into s.

L T T T T PR DR e Lo P L L LT L L sens ITTITTTTL V4
STRING .
strtcpy(s, t, n) /¢ Truncated string copy. Copy at most n CHARs

of t into s, and return s. FNote: in contrast
to strncpy(), the returned copied s always ends

in WUL.

/e ./
STRIRG s;
const STRING t;
size_t n;
{

size_t m;

if (=)

{ m = strlen(t);

n = NIN(n, m);
memmove(s, t, n);
¢(s + n) = JUL;

}

return s;

;
i

94 92-12

8.8 The strtrim() Function

The strtrim() function is invoked directly by fgetstr() of Section 7.26, and
also by stratrim() of Section 8.1. No algorithmic explanation is deemed nec-
essary.

/"iii“‘.““““‘..‘.0‘..“‘.‘tt‘.“..‘...."“.“...“...““‘.t‘.‘..‘/

STRING
strtrim(s) /¢ Trim trailing white space from s and return s.
/* o/
STRING =;
{

FAST STRING p;

if (s ABD *s)

for (p = strlch(s); isspace(ep) AND p >= 8; p~-)
*p = FUL;
return s;

92-12 95

9 MAINTAINING THE (Conjoin PROGRAM

The Coxfoin system described here—documents and code—are automatically
built by .MAK files (See Appendix B). When it is time to process a report or
other document within the system, the user engages the MAKE facility, which in
turn calls the compiler, TEX, and other special processors that create updated
products.

These files may require alteration to conform with the user’s development en-
vironment, whenever a different compiler, directory structure, or set of utilities
is present.

WG) i [T 4R

VPR gy . Sl wepra e ' [

92-12 97

10 ERROR MESSAGES

Error messages take the form
file line offset message

where file names the source file in which the error occurs, line is the offending
line, offset is the approximate character on line where the violation occurs, and
message is a diagnostic message. Such error forms can be used by some text
editors for automatically placing the cursor on the lines for correction.

(1) Beginning match string not found: match_siring.
The given match_string could not be found in the file named on the
%access directive.
(2) Break string is invalid: break.
An invalid break string has been detected. This occurs when no instance
of the break string is found on the %access directive line.
(3) Command line error:
An error on the invoking command line has been detected. File name and
location information is omitted. Causes of this message are
e Unknown option. The command line has a string argument begin-
ning in */? or '~ that is not recognized as an option.

¢ Unknown command. The command line has a string argument unrec-
ognized as either source or target file name.

e No such file or directory. The file cannot be located.

(4) End-match string not found: maich_siring.
The given ending maich_string could not be found in the file named on
the %access directive.

(5) Input and output files may not be the same: name.
The target file is not permitted to overwrite the source file. File name and
location information is omitted from the message.

(6) Memory insufficient for queue.

Memory is unavailable from malloc() to queue the %access stream.
MAX_Q may be set too large, or too many “terminate and stay resident”
programs may be in memory. Try removing some of the TSR’s, or failing
that, recompiling Cofoin with a smaller MAX_Q.

(7) No access file found: name.

The file name given in the %access directive could not be found. Check
the file name, its spelling, and %path directives for locatability.

PREGEDING PAGE BLANK MNOT FILMED

N

38T WresTON ALY 2

98 92-12

(8) o lines copied from accessed file.

%access has failed to transcribe anything from the file named in the
directive. This often happens as a result of misspelling in the starting
match_string. The error message is also put into the target file.

(9) Range separator missing.
The %access directive has the range_separator absent between the two
match-strings.

(10) Size command case invalid: case.
A %size case other than C, a, T or r has been detected. A zero 1s substi-
tuted into the text at this point.

-

92-12 99

APPENDICES

A (Coppoin PROGRAM LISTING

8define VERSION "(08-Apr-1992)" /= (ConJoin.c)*/
char copyrightnotice[14][76] =

{ "sses siss SERRERRSINS 222222 1222 12222, 122222222 AN

vy .u.
i Copyright (C) 1992, California Institute of Technology s,
bt 411 rights reserved. U. S. Government sponsorship under NiSA 8",
s Contract NAS7-918 is acknowledged. 8,
l" '",
b Robert C. Tausworthe 3,
b Jet Propulsion Laboratory L
b 4800 Oak Grove Drive 3",
"s Pasadena, CiA 91109-8099 2",
Il. 'II'
II' 'Il.

};

/e

ANSI STANDARD EEADER FILES 74

#$include <ctype.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <time.h>

-

/e
DEFINITIONS 74
typedef int BOOL;

typedef unsigned char CHAR;
typedef unsigned char * STRING;

#define GLOBAL extern
8define LOCAL static
8define BIL ((void ») 0)
$define NUL [¢]

$define FALSE (o]

8define TRUE 1

100

8define AND
#define IS
8define BOT
8define MOD
#define OR

$ifndef FILENAME_MAX
$define FILENAME _NAX
Sendif

#define MAX_CONTEXT
$define MAX_LINE
8define MAX_Q

$define NUMBER_OF_PATHS

8define PAGE_WIDTH

$define OPEN_COMMENT
#define CLOSE_COMMENT
$define COMMENT_LEBGTH
#define ACCESS_SIGNAL
#define BREAK_SIGNAL
#define COLUME_SIGNAL
sdefine COUNT_SIGNAL
#define GARBAGE_SIGNAL
sdefine PATH_SIGEAL
#define POSTFIX_SIGNAL
#define PREFIX_SIGNAL
8define RABGE_SIGEAL
$define SHOV_SIGEAL
#define SIZE_SIGEAL
$define TAB_SIGNAL

#define BREAK_DEFAULT
#define COLUMN_DEFAULT
#define COUNT_DEFAULT

$define GARBAGE_DEFAULT

&k

£ =

50

10
136
100

20

75

|l1ll _

10

OPEN_COMMENT "access”
OPEN_COMMENT “break"
OPEN_COMMENT “column”
OPEN_COMMENT “count™
OPEN_COMMENT “garbage”
OPEN_COMMENT “path”
OPEB_COMMENT "postfix"
OPEN_COMMERT “prefix"
OPEN_COMMENT “range”
OPEN_COMMENT "show"
OPEN_COMMENT "size"
OPEN_COMMEET "tabs”

[
gy
LY X4

#define OLD_TYPE_DEFAULT ".T_X"

sdefine POSTFIX_DEFAULT

#define POSTVERBATIN
#define PREFIX_DEFAULT
#define PREVERBATIN
8define RANGE_DEFAULT
8define SHOW_DEFAULT
8define TAB_DEFAULT

*\\end" "{verbatim}}"
*[\n\n"

“"{\\footnotesize \\begin{verbatim}"

“\\noindent \\verb|"
FALSE
8

#define TGT_TYPE_DEFAULT " .TeIX"

#define BGE_MATCH_ERR
$define BREAK_ERR
#define CMD_LINE_ERR
#define END_MATCH_ERR
8define I0_SAME_ERR
sdefine MEMORY_ERR
$define B0_ACCESS_ERR
#detine NO_COPY_ERR
8define RANGE_ERR
sdefine SIZE_ERR

WO NONEWN O

92-12

92-12 101

8define FGETSIZE(s) strdup(strtrim(fgets(s, MAX_LIBE, size_stream)))

/e T
TOP-C FUBCTION PROTOTYPES 74

GLOBAL STRING stratrim(STRING);

GLOBAL STRING strdup(STRING) ;

GLOBIL STRING strfnb(STRIEG) ;

GLOBAL STRING strinsert (STRING, STRING);

GLOBAL STRING strler (STRING);

GLOBAL STRING strnset (STRIBG, int, int);

GLOBAL STRING strtcpy(STRIBG, STRING, imt);

GLOBAL STRING strtrim(STRING);

/e .
FUNCTIOR PROTOTYPES L 74

int main(int, STRING [1);

LOCAL BOOL access (STRING) ;

LOCAL BOOL access_condition(STRING, STRING [], int =, int ¢, int);

LOCAL void announce(void);

LOCAL void command_line(int, STRING [], STRING);

LOCAL BOOL ConJoin_files{void);

LOCAL BOOL copy.to_end_match(FILE », STRING [], int, int);

LOCAL BOOL directive (STRING, STRING);

LOCAL void error_message(int, STRING, BOOL);

LOCAL STRIEG fgetstr (STRING, FILE #);

LOCAL void file_defaults(void);

LOCAL FILE = file_open(STRING, STRING);

LOCAL STRING right £i11(STRING, int);

LOCAL BOOL match_parameters(STRING, STRING, STRING [], STRING (R

int =, int », ints, jint *);

LOCAL FILE » open_access (STRING);

LOCAL void open_io_files(void);

LOCAL void initialization(int, STRING [1);

LOCAL STRING putline (STRING);

LOCAL BOOL scan_to_bgn_match(FILE #, STRING [], imt, int);

LOCAL STRING strext (STRING, STRING);

LOCAL void timestamp(void);

LOCAL void usage(void);

/* .
LOCAL DATA STRUCTURES ./

LOCAL long access_lines;

LOCAL CHAR close [COMMENT _LENGTH] = CLOSE_COMMESRT;

LOCAL int column = COLUME_DEFAULT;

LOCAL CHAR ConJoin_file[FILENAME_MNAX] = "*;

102

LOCAL long ConJoin_lines;
LOCAL FILE » ConJoin_stream
LOCAL STRING countsignal
LOCAL BOOL credits

LOCAL CHAR garbage

LOCAL STRING last_acc_lines
LOCAL STRING last_CJn_lines
LOCAL STRING last_tgt_lines
LOCAL STRING last_use_lines
LOCAL CHAR mark[10]

LOCAL CHAR open [COMMENT _LENGTH]
LOCAL STRING plth_lilt[lUHBEl_OF_PATHS];

LOCAL int path_list_size
LOCAL CHAR postfix[MAX_LINE]
LOCAL CHAR postverbatim[30]
LOCAL CHAR prefix[MAX_LIBE]
LOCAL CHAR preverbatim{30]
LOCAL CHAR range[10]

LOCAL BOOL show

LOCAL CHAR size_file[FILENAME_MiX]

LOCAL CHAR spaces[MAI_LINE)
LOCAL int tabwidth

LOCAL CHAR tgt_file [FILENANE_MAX]

LOCAL long tgt_.lines;
LOCAL FILE * tgt_stream

To;
COUBT_DEFAULT;
TRUE;
GARBAGE_DEFAULT;
¥IL;

liL;

NTIL;

NIL;
BREAK_DEFAULT;
OPEN_COMMENT ;

0; z2- o -

PDSTFIX DEFAUL

PREFIX. nsnuu'
PREVERBATTN;
RANGE_DEFAULT;
SHOV_DEFAULT;

TAB_DEFAULT;

m; ,
/* main */

T L L e ARt d L I il il et il

main(argc, argv)

/* Process a ConJoxn fxlo to create a target 1110

Return a FALSE value if no failure occurs, or
TRUE or other nonzero value if a failure was

encountered.

/.---

STRING argv[];

{
BOOL failure;
FILE +size_streanm;
int i;

./

initialization(argc, argv); /* terminates if no source file named

open_io_files();

_access_lines = ConJoin_lines = tgt_lines = 0;

timestamp();

failure = ConJoin_files();

failure |= fclose(ConJoin_stream) | fclose(tgt. ltrla-)
for (1 =0; i < path_ll:t_sizc, i++)

free{path_list[i]);

free(last_acc_lines);
free(last_Cln_lines);

free(last_tgt_lines);

free(last_use_lines);

printf("Processed:\n%101d %s source lines\n%10ld accessed lines\n"
"¥101d %s total lines writtem\n", Conloin_ lines, ConJoin_file,
access_lines, tgt_lines, tgt_file);

if (size_stream = fopen(size_file,

II'II))

92-12

s/

/% terminates on failure in opening files »/

i
£
P
i
t
H
i

92-12
{ fprintf(size_stream, "%¥1d\n%ld\n¥Xld\n¥%.3f\n", ConJoin_lines,
access_lines, tgt_lines,
(double) access_lines / (double) tgt_lines);
failure |= fclose(size_stream);
}
return failure;
}

/* end main s/
/+ initialization ¢/
JEEREERECI LSS SIS SRS SR A RN ARSSESIPIBAAEN SR AESSH 4L EEN4I0430484000000008/
void
initialization(argc, argv)
/% Process command line file namez and optioms, and retrieve
size_file statistics.

/e - ./
STRING argv[1;
{

CHAR msg[MAXI_LINE];

STRING s;

FILE *gize_stream;

command_line(argc, argv, msg);

announce();

if (emsg)

{ usage();
error_message(CMD_LINE_ERR, msg, FALSE);
exit (TRUE);

}

file_defaults();

if (NOT strcmp(ConJoin_file, tgt_file))

{ strcpy(msg, ConJoin_file);
«ConJoin_file = NUL;
usage();
error_message(I0_SAME_ERR, msg, FALSE);
exit(TRUE);

}

strcpy(strchr(s = strcpy(size_file, tgt_file), *.?), ".siz");
if (size_stream = fopen(size_file, "r"))
{ last_CJn_lines = FGETSIZE(msg);

last_acc_lines = FGETSIZE(msg);

last_tgt_lines = FGETSIZE(msag);

last_use_lines = FGETSIZE(msg);

fclose(size_stream);

/* end initialization &/
/¢ command_line ¢/
T e T PP R TR LT e PR TR T IR TS DL LT v
void
command_line(argc, argv, msg)

/* Process information on the command line: extract ConJoin_file
and tgt_file names, and option -a, when present. Return with
msg set to error conditions.

/e s/
STRING argv[], msg;

103

92-12

104
{
int i;
STRING s;
ensg = NUL;
for (i = 1; i < argc; i++)
{ s = strlvr(argv{il);
if (»s IS ’-’ OR #8 IS */?)
{ svitch (e+s)
{ case ’a’:
credits = FALSE;
break;
default:
sprintf(msg + strlen(msg), "Unknown option: "
“Ys.\n", argvlil);
} B
eargv[i] = JUL;
})
else if (NOT sConloin_file)
strcp’(Coﬁiaip;tilo, 8);
alse if (NOT stgt_file)
strcpy(tgt_file, 8);
else I,
sprintf(msg + strlen(msg), "Unknown command: Ys.\n", 8);
}
if (NOT sConJoin_file) E
strcat(msg, "No source file named.\n");
}

/+ end command_line */
o /+_announce */
/...‘.....“‘.“““‘.“.““‘...“‘“...“““O".‘.““‘0‘.“..‘.‘.“../

void -
announce() /+ Announce program, copyright, and author.
/e ./
{
int i _
if (credits)
{ for (i = 0; scopyrightnotice[i]; i++)
printf("¥s\n", copyrightnotice[il);
printf("\n\t\t\t Conloin Program"
"\n\t\t\t %s\n\n", VERSION);
}
}

/* end announce s/
/% error_message */

/‘.t..“‘.t.‘.““‘ft!’..“.‘....“"‘....‘...‘i.‘ii“l‘...‘t‘t.tttt..‘../

void -
error_message(n, s, f) /+ Write error message n augmented with string 8
to stdout, indicating the curreant line in the
source file. Repeat the message on the target
file if £ is TRUE.
s/

/e --
STRING s;

92-12 105

LOCAL STRING errmsg[] =

{ "Beginning match string not found: ",
"Break string is invalid: “,
“Command line error: ",
"End-match string not found: ",
"Input and output files may not be the same: ",
"Memory insufficient for qusus.”,
"No access file found: ",
"No lines copied from accessed file.",
‘Range separator missing.",
“"Size command case invalid: "

'H

if (*ConJoin_file)
printf(“\a¥%s, %1d 1: %s¥s\n",
ConJoin_file, ConJoin_lines, errmsgln], s);
else
printf("isis\n", errmsginl, s);
if (f£) b
fprintf(tgt_stream, "s*+ERROR**+ %s¥s\n", errmsg(n], s);

/¢ end error_message ¢/
/% usage */
P T T T T T T P Y Y
void
usage() /¢ Print a message on usage syntax of ConJoin.

/» 74
{

printf("Usage: ConlJoin <ConJoin source> <target file> "
"[<options>]\n\n"
"\tSource file type default is .CJn\n"
"\tTarget file type default is ¥s\n\n"
"Optioms:\n"
“\t-a Do not announce the program.\n", TGT_TYPE_DEFAULT);

/% end usage */
/+ file_defaults »/
P L T T T Y T Py P PY YT TY

void
file_defaults() /+ Supply ConJoin file type .CJn if missing, and
supply missing parts of tgt_file, if any.
A bt ./
{
STRING s;

if (NOT (s = strchr(ConJoin_file, ’.’)))
strcat(ConJoin_file, ".CJn");
if (NOT etgt_file)
{ strtcpy(tgt_file, ConJoin_file,
strchr(ConJoin_file, ’.?) - ConJoin_file);
}
if (NOT (s = strchr(tgt_file, ’.’)))
strcat(tgt_file, TGT_TYPE_DEFAULT);

106 92-12

/% end file_defaults ¢/
/ open_io_files &/
/.‘i..‘..“.‘.‘.““‘..“““".“..“.“...."“...“.....‘.“‘.O...“‘./
void
open_io_files() /+ Open ConJoin_file and tgt_file into ConJoin_stream
and tgt_stream. Rename old tgt_file, if any,
with OLD_TYPE_DEFAULT. Terminate with an error
message via file_open() if files camnot be opened.

/e ./
{
CEAR tgt_bak[FILENANE_MAX];
FILE » f;
STRING s;
ConJoin_stream = file_open(ConJoin_fils, "r");
if (£ = fopen(tgt_file, "r")) -
{ fclose(f); -
s = strchr(strcpy{tgt_bak, tgt_file), ’.’);
strcpy(s, OLD_TYPE_DEFAULT) ;
remove (tgt_bak);
rename(tgt_file, tgt_bak);
} .
tgt_stream = file_open(tgt.file, “v");
: }

/* end open_io_files »/
/* file_open */
Jresetessst bttt ettt art s snets st tthisiitterttsoiiististesittsibtiacs/
FILE »
file_open(name, use)
/+ Open the name file for given use, and return resulting stream.
If file cannot be opened, print reason, and abort processing.
/e 74
STRING name, use;
{

CHAR s[MAX_LINE];
FILE » streanm;

if (NOT (stream = fopen(name, use)))

{ strcpy(s, name);
sname = WUL;
strocat(strcat(s, ": "), strerror(errno), MAX_LINE - 1); .
error_message(CMD_LINE_ERR, =, FALSE);
. exit (TRUE);
}

return stream;

/* end file_open */ :
/¢ timestamp */ ;
,.....““......“...‘.".“‘...“.‘.““‘.‘.....‘..“....."‘.“““.“./ H

void - T .
timestamp() /% Write the tgt_file name and a time-stampsd header with
' a revision varning onto the tgt_stream.
/e s/
{ -

i
3
2

IR RRITRN]

92-12

time_t clock;

CHAR atime[26],
bar[MAX_LIBE],
blanks [MAX_LINE];

STRING 8p, text;

struct tm t;

int n;

n = strlen(open) + strlen(close);

strnset(bar, ’=’, PAGE_VWIDTH - n);

strnset(blanks, * ’, PAGE_VIDTH - n - 2);

time(&clock);

t = localtime(&clock);

stratrim(strcpy(atime, asctime(t)));

sp = right_fill(atime, strlen(tgt_file) + n + 5);

fprintf(tgt_stream, "¥%s (%Xs)%s(¥s)¥%s\n", open, atime, sp,
tgt_file, close);

fprintf(tgt_stream, “¥%s¥%s¥%s\n", open, bar, close);

107

text = “Y%s| This file vas Conloin-ed from input file ¥%s.¥%s|%s\n";

sp = right_fill(text, strlen(ConJoin_file) - mn = 7);
fprintf(tgt_stream, text, open, ConJoin_file, sp, close);
fprintf(tgt_stream, “%s|¥%s|¥%s\n", open, blanks, close};

text = "Ys| DO NOT REVISE THIS FILE.%s|%s\n";
fprintf(tgt_stream, text, open, right_fill(text, n - 7), close);
fprintf(tgt_stream, “%s|%s|¥Xs\n", open, blanks, close);

text = "%s| To make revisions, modify the original file.¥s|¥%s\n";

fprintf(tgt_stream, text, open, right_fill(text, n - 7), close);
fprintf(tgt_stream, "%s¥ks¥s\n", open, bar, close);
tgt_lines += 8;

/* end timestamp */

/* right_£ill »/

P I T R T T E P P T ey SEsssSEENRNS RIS/
STRING
right_£ill(s, n) /* Generate spaces as a blank string of length
PAGE_VWIDTH - n. Return spaces.

/* ./
STRING s;
{

return strnset(spaces, ’ ’, PAGE_WIDTE ~ strlen(s) - n);
}
/* end right_£ill »/
/* Conloin_files s/
/.‘.‘...‘..O.........‘......‘....‘..‘.‘ P2 2T 2] SHdERISE ‘.../

ConJoin_files() /* Process the ConJoin source file and create the
expanded target file. Return a nonzero value
if an error occurs, or a O value if nome. Count

ConlJoin_lines, access_lines, and tgt_lines.
—y

_—
-

BOOL erTor;
CHAR hold[MAX_LINE],
line[MAX_LINE];

T R

108

92-12

STRIBG extract;

error = FALSE;
sspaces = WUL;
for (ConJoin_lines = 0; fgets(line, MAX_LIEE, ConJoin_stream);)
{ ConJoin_lines++;
tgt_linea++;
if (NOT sstrfnb(line))

{ fprintf(tgt_stream, “%s", line);
continus;
}
if (strstr(line, open))
{ if (extract = strstr(line, ACCESS_SIGNAL))

strcpy(hold, line);
error |= directive(extract, line);
}
else
extract = §IL;
fprintf(tgt_stream, "%s", line);
if (extract)
error |= access(hold + (extract - line) +
strlen(ACCESS_SIGNAL));
}

return 6rIor;

/+ end Conloin_files */
/* directive »/

/‘l.t.“t.“.t‘.“‘.‘.‘t.“‘tt“ttt.““““.0.0‘.“."..t.‘.““““‘..‘/

BOOL

directive(extract, text)

/¢ Process ConJoin directives that may appear in the text string.
If extract is non-NIL, the text contains an access directive
that may only need to be preparsd for show-ing. In case of
Ysize, write the appropriate values into text. Insert
preverbatim and postverbatim into text if show is, or has just
turned, TRUE. Return TRUE if a bad Ysize case appears; FALSE
othervise.

./

/*

STRING extract, text;

{

STRING s,
t;
CHAR g
line[MAX_LINE];
BOOL change_show;

strcpy(line, text); - s
if (extract) oo
t = line + (extract - text);
else if (t = stratr(line, BREAK_SIGNAL)) -
strext (mark, t + strlen(BREAK_SIGNAL));
else if (t = strstr(line, COLUME_SIGNAL))
{ column = atoi(t + strlen(COLUMN_SIGNAL));
if (colummn > 0)
{ strnset(spaces, ’ ’, column);

92-12

else

else

else

else

if

if

if

if

if

if

if

if

109

column = O;

}
else
sgpaces = NUL;
(t = strstr(line, COUNT_SIGNAL))

strext(countsignal, t + strlen(COUNT_SIGWAL));
(t = strstr(line, GARBAGE_SIGEAL))
if (g = estrfnb(t + strlen(GARBAGE_SIGNAL)))

garbage = g;

(t = strstr(line, PATH_SIGNAL))
path_list[path_list_size++] =
strdup(strext(t, t + strlen(PATH_SIGNAL)));

(t = strstr(line, POSTFIXI_SIGEAL))
strext (postfix, t + strlen(POSTFIX_SIGNAL));
(t = strstr(line, PREFIX_SIGNAL))
strext(prefix, t + strlen(PREFIX_SIGNAL));
(t = strstr(line, RANGE_SIGEAL))
strext(range, t + strlen(RANGE_SIGNAL));
(t = stratr(line, SHOW_SIGNAL))
s = strlur(stratrim(t + strlen(SHOW_SIGNAL)));
if (NOT strcmp(s, "on"))

change.show = TRUE + TRUE;
else if (NOT strcmp(s, "off"))

change_show = TRUE + FALSE;
if (change_show AND NOT show)

show = change_show - TRUE;

(t = strstr(line, SIZE_SIGNAL))
do
{ #t = BUL;
switch (*(t = strfnb(t + strlen(SIZE_SIGNAL))))
{ case ’¢c’:
case ’C’:
s = last_Cln_lines;
break;
case ’a’:
case ’A7:
s = last_acc_lines;
break;
case 'r?:
case ’R?:
s = last_use_lines;
break;
case ‘t?:
case ’T’:
s = last_tgt_lines;
break;
default:
s = "O";
error_message(SIZE_ERR, text, FALSE);
return TRUE;

110

strext(s, t)

sprintf(text, "XsksXs", line, s, ++t);
} while (¢t = strstr(strcpy(line, text), SIZE_SIGNAL));
}
olse if (t = strstr(line, TAB_SIGNAL))
tabuidth = atoi(t + strlen(TAB_SIGNAL));
if (v AND show)
{ strinsert(text + (t - line), preverbatim);
if (sclose AND (t = strstr(text, close)))
strinsert(text, postverbatim);
else
strcat(stratrim(text), postverbatim);
if (change_show)
show = change_show - TRUE;
}
return FALSE;

" /e end directive /

/% strext =/
/..ttottttttttoaott‘ttcttg9;:tcttttqggtggggttgq9pqo;tttttnttttttttttounaa/

STRING

is not null, or to the end of t if null, into s=. Remove

leading and trailing blanks from s and returm s.

/e ./
STRING s, ¢;
{
STRING p;
if (#close AND (p = strstr(t, close)))
strtcpy(s, t, p = t);
else
strcpy(s, t);
return stratrim(s);
}
/* end strext =/
/* access */
Jentbakbsssbsin o iitibtby *hees T T et vy
BOOL
access(buffer) /+ Process the text extraction operation spscified
in the line buffer to the tgt_stream. Return
FALSE if no error, TRUE if an error occurred.
/* s/

{

STRING buffer;

STRING bgn_match[MAX_CONTEXT + 1],
end_match[MAX_CONTEXT + 1];
CHAR module [FILENAME_MAX];
BOOL 4TTOoY;
FILE * modulestream;
int bgncount,
bgnoffset,
endcount,
endoffset,
i;

92-12

/+ Extract strihgrfiﬁi to the ﬁiqse;foniiﬁt string, if close

92-12

111

strext (buffer, buffer);
if (match_parameters{buffer, module, bgn_match, end_match, &bgncount,
&bgnoffset, kendcount, kendoffset))
return TRUE;

if (BOT (modulestream = open_access(module)))

{ error_message(NO_ACCESS_ERR, module, FALSE) ;
return TRUE;

}

printf("%saccess Ys¥s\n", open, buffer, close);

if (sprefix)

fprintf(tgt_stream, “"¥s\n", prefix);
error = scan_to_bgn_match(modulestream, bgn_match, bgncount,
bgnoffset);
error |= copy_to_end_match(modulestream, end_match, endcount,
endoffset);
for (i = 0; bgn_match[i]; i++)
free(bgn _match[il);
for (i = O0; end_match[i]; i++)
free(end_match[i]);
error |= fclose(modulestream);
if (epostfix)
fprintf(tgt_stream, "%s\n", postfix);
return error;

/* end access */
/* match_parameters */

/‘lt..‘.“‘....“‘..“.“.l“.....lt"‘.‘. [11 L] SEEERNIED /

BOOL

match_parameters(buffer, module, bgn_match, end_match, bgncount, bgnoffset,
endcount, endoffset)

/* Extract access module name, and beginning and ending access
conditions. Return TRUE if an error is encountered, FALSE
othervise.

/e

*/

STRING buffer, bgn_match[], end_match[], module;

int

{

sbgncount, sbgnoffset, sendcount, *endoffset;

CHAR line[MAX_LINE];
STRING s,
t;

if (BOT (s = strstr(strcpy(line, buffer), mark)))

{ error_message(BREAK_ERR, buffer, FALSE);
return TRUE;

}

stratrim(strtcpy(module, line, s ~ line));

if (NOT (*(t = strfnb(s + strlen(mark)))

AND (8 = strstr(t, range))))

{ error_message(RANGE_ERR, buffer, FALSE);
return TRUE;

}

s = JUL;

s += strlen(range);

if (access_condition(t, bgn_match, bgncount, bgnoffset, 1))

112
return TRUE;
if (access_condition(s, end_match, endcount, endoffset, -1))
return TRUE;
return FALSE;
}
/% end match_parameters */
/+ access_condition */
/ [1] [1 24 *".‘“.‘.‘“‘t‘.‘“....‘.“...‘......““‘i..../

BOOL
access_condition(buffer, match, count, offset, init)
/+ Extract access condition from buffer. Set offset to init if
no offset is parsed in the buffer. Return TRUE if an error
i{s encountered, FALSE otherwise.

/* - ./
STRIEG buffer, match[1;
int scount, *offset;
{
int n;
STRIEG s, t;

soffset » init;

scount = 1;

s = stratrim(buffer);

if (t = strstr(s, countsignal))

{ scomnt = atoi(s = t + strlen(countsignal));
ot = BUL;
}
if ((t = strchr(s, ’+?)) OR (t = strchr(s, 1-1)))
{ soffset = atoi(t);
ot = NUL;
}
else if (isdigit(esbuffer))
{ soffset = atoi(buffer);
sbuffer = FUL;
}
s = buffer;
for (n = 0; »s AND n < MAX_COBTEIT; n++)
{ if (¢ = strstr(s, mark))
{ ot = NUL;
t += strlen(mark);
}
matchn] = strdup(strtrim(s));
s = strfnb(t AND »t 7 t : s + strlen(s));
}

if (o > O AND matchin - 1] IS NIL)
return TRUE;

matchin] = BIL;
return FALSE;

/* end access_condition ¢/
/% open_access ®/
/tttt.tt.tt.ttttttt.ttt.tt.t.i.tttt..‘t.‘tttttt‘.t..ttttttti.t.tttt‘.tttt/

92-12

92-12 113

FILE #*
open_access(file) /+ Open the specified file for reading.
/* s/
STRING file;
{ .

int i;

CHAR plth[FILEIAHE-HIX];

FILE * stream;

strcpy(path, file);

for (i = 0; BOT (stream = fopen(path, “r")) AND i < path_list_size; i++)

strcat(strcpy(path, path_list[i]), file);

return stream;

}
/+ end open_access */
/* scan_to_bgn_match »/

/“...“‘.“..“..‘ [222 " d .‘..........‘.....“..........‘./

BOOL
scan_to_bgn_match(modulestream, bgn_match, bgncount, bgnoffset)
/¢ Scan the modulestream for the beginning match condition and
return positioned to access the first line to be copied.
/e */
FILE » modulestream;
STRING bgn_match[1;

int bgncount, bgnoffset;
{
fpos_t fp,
fpqueus [NAX_Q];
int n,
offset,
qex;
BOOL eITOr;
long qe;

CHAR text [MAX_LINE];

n = error = offset = 0;
qe = -1,
while (NOT fgetpos(modulestream, &fp) AND
fgets(text, MAX_LINE, modulestream))
{ qex = (int)(++qe MOD MAXI_Q);
fpqueue{qex] = fp;
if (bgn.match[n])
{ it (BOT strstr(text, bgn_match(nl))
continue;

if (bgn_match[++n])
continue;

if (--bgncount <= 0)

{ if (bgnoffset <= 0)
{ qex = (int)((qe + bgnoffset) MOD MAX_Q);
fsetpos(modulestream, kfpqueune [qex]);
break;

114
else if (bgnoffset-- IS 1)
break;
}
else
n=0;
}
else if (EOT bgnoffset)
{ fsetpos{modulestrean, &tpquena(qex]);
break;
}
else if (++offset >= bgnoffset)
break;
}
if (bgn_match[0] ABD bgn_matchin])
{ error_message (BGE_MATCH_ERR, bgn_match[al, TRUE);
error = TRUE;
}
Tetlurn error;
}
/* end scan_to_bgn_match */
/* copy_to_end_match */
/e e STTTTSTyrTprpprsrreperry et TYT T TP ITIRE LI LS S ot ol
BOOL

copy_to_cnd_ntch(lodnlcstrou, end_match, endcount, endoffset)
/+ Copy lines from modulestream to tgt_stream, up until the end-match
condition is satisfied. Return TRUE if an error vas encountered,

printing the appropriate error message; return FALSE otherwise.

/* - o/
FILE smodulestrean;

STRING end_match[]I;

int endcount, endoffset;

{

int count,
error,
offset,
nl
qbx,
gex;
long qb,
qe;
CHAR text[MAX_LINE];
STRING txqueue[MAX_Q];

92-12

qe = -1;
n=0;
for (count = error = offset = O; fgetstr(text, modulestream); count++)
{ if (endoffset <= 0) T
{ qex = (int)(++qe MOD MAX_Q);
if (NOT (tzqueuelqex] = strdup(text)))
{ error_message(MEMORY_ERR, "“, FALSE) ;
error = TRUE; -
break;
}

if ((qb = qe + endoffset) >=0)
{ qbx = (int)(qb MOD MAX_Q);

92-12 115
free(putline(txqueus[gbx]));
txqueue[qbx] = BIL;

}
it (end_match[n])
{ if (BOT strstr(text, end_match(n]))
continue;
it (end_match[++n])
continue;
if (--endcount <= 0)
{ while {(qb <= qe)
{ gqbx = (int)(qb++ MOD MAX_Q);
free(txqueune[qbx]);
}
break;
}
else
n=0;
}
}
else if (end_match[n])
{ putline(text);
if (BOT strstr(text, end_match(n]))
continue;
if (end_match[++n])
continue;
if (~-endcount > 0)
n=0;
}
else if (offset++ < endoffset)
putline(text);
else
break;
}
if (end_match{0] AND end_match[n])
{ error_message(END_MATCH_ERR, end_match[n], TRUE);
error = TRUE;
}
if (NOT count)
{ error_message(NO_COPY_ERR, "", TRUE);
arror = TRUE;
}
return error;
}
/¢ end copy_to_end_match s/
/+ fgetstr s/
L T T e P PR PR TR R T L e ee eene/

STRING

fgetstr(s, stream)

/* Get string s from the named stream with
TABs replaced by spaces, and return it.

/»

STRING s=;

./

T

O B M b

1

16 92-12

FILE * stream;

{

CHAR <,
p[MAX_LINE];
int i,
bH ‘
STRING q,
t;
if (NOT (q = fgets(p, MAX_LINE, stream)))
return NIL;
for (t = 8, 1 = 0; c = sq++;)
{ if (c IS ’\t?) .
{ j = tabwidth - (i MOD tabwidth);
while (§--)
{ tbs = 2 7
++i;
}
continue;
}
else if (NOT (isspace(c) OR isprint(c)))
¢ = garbage;
st = C;
ie+;
}
«t = FUL;
return strcat(strtrim(s), “\n");
}
/+ end fgetstr */
/+ putline ¢/
/“..'.‘i“....‘.“‘...‘i..‘..‘..‘.‘.‘.““‘.".‘.i‘...“...““‘.“....‘/
STRIRG
puatline(s) /* Write the the string s onto the output stream, properly
columnated. The string is presumed to exist and contain
a nevline. Count the output both as cne of the
access_lines and tgt_lines.
/== ./
STRING s;
{ .
STRING t;
if (s AND (¢t = strchr(s, ’\n’}))
{ t =8 + (column < 0 ? min(-column, t - s) : 0);
fprintf(tgt_stream, “iaYs", spaces, t);
access_lines++;
tgt_lines++;
}
return s;
}
/+ end putline ¢/
/e ./

/+ end program »/

L |)

92-12 117

B (Coppin CONSTRUCTION
B.1 The Master Document File

% (30-Jul-1992) (CI_reaprt.Tek)
Lssass L 22 L 2 2 4 222222222 2] » L 2 2 L2 2 2 4 2 58888
s 2
24 Copyright (C) 1992, California Institute of Technology s
% 411 rights reserved. U. 5. Government sponsorship under BiSA s
i Contract NAS7-918 is acknowledged. $
%8]
i Robert C. Tausworthe 2
% Jet Propulsion Laboratory]
%18 4800 Oak Grove Drive]
% Pasadena, CA 91109-8099]
is
i s
pE2 2 L2223 2222 2222222 2 1222222232222 2222222222222 2222222222 2)

% JPL REPORT FORMAT

\documentstyle[taus,tvoside]{article} % taus.sty is needed because it
% contains the box shapes for Figure 1
Y and the JPL Report format.

\newcommand{\path}{CJ_}
\input{\path style}

\newcommand{\Title}{Conjunctive Programming: \\ An Integrative Approach to \\
Software System Synthesis}

\newcommand{\PubDate}{2ugust 31, 1992}

\nevcommand{\DocNumber}{92-12}

\newcommand{\work}{report}

\begin{document}

k4 COVER PAGE
\pagestyle{empty}

\coverpage{JPL Publication \DocNumber}{\Title}{\duthor}{\PubDate}
% FRONT MATTER STYLE
\rm

\pagestyle{myheadings}
\markboth{\DocHumber}{\DocBumber}
\pagenumbering{roman}

\setcounter{page}{2}

% WASA AND OTHER CREDITS

\input{\path credt}

% .- ABSTRACT

118 92-12

\rectopage
\putmidpage
{ \begin{center}
\large \bf Abstract\\[.3in] \normalsize

\end{center}

\begin{quotation}
\input{\path abstr}
\end{quotation}

%- -- ACKNQVLEDGMENT

\clearpage
\putmidpage
{

\begin{center}
\large \bf Acknowledgement\\[.3in] \normalsize

\end{center}

\begin{quotation}
\input{\path ackno}
\end{quotation}

Yommmam TABLE OF CONTERTS

\rectopage

\begin{center}
\Large \bf Contents\\[.5in]
\normalsize

\end{center}

\Tableofcontents

- LIST OF FIGURES ———————

\vspace*{0.5in}
\begin{center}

{\Large \bf List of Figures}
\end{center}

\Listoffigures

%-=- LIST OF TABLES

% JOTE: THIS SECTION IS COMMENTED OUT BECAUSE ¥O TABLES CURRENTLY
% EXIST IB THE REPORT.

l\vspaca*{OLSin}
%\begin{center}
% {\Large \bf \noindent List of Tables}

¥\end{center}

(AT

92-12

Y\Listoftables

119

%-- BODY

\rectopage
\pagenumbering{arabic}
\setcounter{section}{0}
\setcounter{page}{1}

\input{\path body}

R APPENDICES

\sectionpaging
\appendix
\begin{center}
\Largs \bf APPENDICES \vspace{.5in}
\normalsize
\end{center}
\addtocontents{toc}{\protect\vspace{5ex}}
\addtocontents{toc}{}

\addtocontents{toc}{\protect\begin{center}\protect\Large \protect\bf

Appendices \protect\end{center}\protect\vspace{Sex}\protect\normalsize}

\addtocontents{toc}{}
\input{\path appxi}

\sectionpaging
\input{\path appxB}

\sectionpaging
\input {\path appxC}

S REFERENCES

\sectionpaging
\input {\path bibl}

% EED OF DOCUMENT

\end{document}

[P

120

92-12

B.2 The Program Compilation Script

Qecho off

rem (31-Jul-1992) (CJ_code.bat)
rem 383353358388 %% 12222 (312322732222 0 t2z2: 22222 2] 2222222222222 2
rem & $
Tem # Copyright (C) 1992, California Institute of Technology s
rem ¥ 111 rights reserved. U. S. Government sponsorship under EiSA s
rom 3 Contract BAS7-918 is acknowledged.]
Tem § 2
Tem Robert C. Tausworthe 3
rem ¥ Jet Propulsion Laboratory E
rem § 4800 Oak Grove Drive 3
Tem & Pasadena, CA 91009-8099 3
rom & t
rem ¥

rem % 2882 8 88882 2252225200122 0032R0000008
Tem Conloin environment transformation for MAKE, and MAKE the Conloin

Tem

Program.

if exist CJ_code.mak goto ok
echo §o file CJ_code.mak

goto fin

1ok

Tem set up the KAKE enviromment for locating include files, libraries,
rem the MAKE program, and temporary file i/e:
set savepath=Ypath%

set pnth!c:\c\lscs\bin;lllvcplthl

set include=c:\c\ansi\h;c:\c\topc\h

set lib=c:\c\lib

set init=c:\c\msc5\bin

set tmp=c:\temp

Tem MAXKE the ConJoin program

make CJ_code.mak
Tom restore the environment

set path=Ysavepathi
set savepath=

set lib=

set tmp=™

set include=

set init=

:fin

o om

LI 1

92-12 121

B.3 The Program Compilation MAKE File

& (31-Jul-1992) (CJ_code .mak)
2)
" Copyright (C) 1992, California Institute of Technology
L2 All rights reserved. U. S. Government sponsorship under RiSA
E 2 Contract WAS7-918 is acknowledged.
2 4
2 Robert C. Tausworthe]
22 Jet Propulsion Laboratory 3
E 2 4800 Oak Grove Drive 8
3 Pasadena, Ci 91009-8099]
2]
2
] ConJoin program construction instructions

ConJoin.exe: ConlJoin.c CJ_code.mak
cl /W3 /0x ComJoin.c /F 1000 /link /NOE stopc.lib;
del ConJoin.obj -

The compiler is diracted to print all warning messages and make the program
internal stack size be 0x1000. The program is built using the small memory
model, the compiler default. The automatic linking process searches the small-
memory-model TOP-C library for the functions discussed in Section 8.

i1t

122 92-12

B.4 The Document Construction Script’

Qecho off

rem (31-Jul-1992) (CJ_doc.bat)
rem 33¥33288 s SSSRREEESESRESRSEES0RE00003202105E30000838
rem ¥
Tem ¥ Copyright (C) 1992, California Institute of Technology s
Tem § All rights reserved. U. 5. Government sponsorship under NASA L
rem ¥ Contract §AS7-918 is acknovledged.]
rem & J
rem § Robert C. Tausworthe s
rem ¥ Jet Propulsion Laboratory
rem § 4800 Dak Grove DPrive
rem 8 Pasadena, Ci 91009-8099 s
Tem §]
rem §

Tem 353888 (12222 CYIZIIIR2 R 2222222222 22 2222222 22 2 (222232222222 2]
Tem MAKE the ConJoin usage message and entire document.

make /I cj_usage.mak
make cj_doc.mak

Two separate MAKE invocations are made. The first « made under the /I
option, causes MAKE to ignore an error return code from processors called by
MAKE. This option is necessary, because CJ_usage.mak executes Conjoin with
no command arguments, a condition that causes the usage message to print and
the program to terminate with an error-indicating return code. The Conjoin
output, in this case, is redirected into the CJ_usage.msg file for %access into
Section 4.2 of this document.

The second MAKE invocation compiles and builds the document you are read-
ing.

e T

A

92-12

B.5 The Usage Message MAKE File

8 (31-Jul-1992) (CJ_usage .mak)

2 2

2 Copyright (C) 1992, California Institute of Technology

2 A1l rights reserved. U. S. Government sponsorship under NiSA
" Contract WAS7-918 is acknowledged.

2

2 Robert C. Tausworthe

" Jet Propulsion Laboratory

t 22 4800 Oak Grove Drive

3 Pasadena, Ci 91009-8099

2

3

£ 22222 24 (222222222 12222232 1 2 2] (22222222 S3SSR852500088

& This is a separate MAKE file because it is executed with the /1
& option to ignore exit codes, because ConJoin returns an error code on
termination. .

CJ_usage.msg: Conjoin.exe
ConJoin >CJ_usage .msg

123

124 92-12

B.6 The Document MAKE File

(31-Jul-1992) (CJ_doc.mak)
b 24 2
”" Copyright (C) 1992, California Institute of Technology
2 A1l rights reserved. U. S. Government spomsorship under WASA
" Contract BAS7-918 is acknowledged.]
L 2 s
24 Robert C. Tausworthe]
2 Jet Propulsion Laboratory 4
" 4800 Oak Grove Drive s
L 2 Pasadena, Ci 91009-8099]
2]
2]]

$ 2 13858 3 sERBERRES pei2ii 22222224

3838
L 22224 22222222223 2 222 202 Lol dnd 122224 4 L 2

8 Directory of TOP-C Functions
topc=\c\topc\c\ #

CJ_prog.cal: Conloin.c Cl_prog.cal
calltree /c CJl_prog.cal /b CJ_prog.by ConJoin.c

CJ_prog.by: Conloin.c CJ_prog-by
calltres /c CJ_prog.cal /b CJ_prog.by ConJoin.c

CJ_prog.siz: Conloin.c
flines ConJoin.c >CJ_prog.siz

CJ_appxd.tex: Cl_Appxh.cjn Conloin.c
ConJoin -a CJ_appxd

CJ_appxB.tex: CJ_AppxB.cjn CJ_reprt.tex cj.code.bat cj_doc.bat \
cj.code.mak cj_doc.mak
ConJoin -a CJ_appxB

CJ_appxC.tex: CJ_appxC.cjn CJ_prog.cal CJ_prog.by
Conloin -a CJ_appxC

CJ_body.tex: CJ_body.Cln ConJein.c CJ_style.tex CJ_usage.msg \
Cl_figl.tex CJ_prog.siz $(topc)stratrim.c $(topc)strdup.c \
$(topc)strfnb.c $(topclstrlvr.c $(topc)strtcpy.c $(topc)stririm.c

ConJoin -a CJ_body

CJ_reprt.dvi: CJ_reprt.tex CJ_style.tex CJ_abstr.tex CJ ackno.tex \
CJ_credt.tex CJ_body.tex CJ_appxd.tex CJ_appxB.tex \
CJ_appxC.tex CJ_bibl.tex CJ_doc.mak

call latex CJI_reprt
call dvi CJ_reprt

The calltree program is a utility supplied with Microsoft C. It prints out
call trees (structure diagrams) and reference trees (called-by diagrams). These

appear in Appendix C.

U ka0

I UTT 0 o DA M 4|

o

W gy

92-12 125

The flines utility scans the named file and writes the number of lines in
that file normally to the console, but here to a size file accessed by CJ_body.Cln.

The Confoin program creates the .TeX versions of Appendices A, B, and
C and the text body; the -a option suppresses printing of the JPL/Caltech
copyright notice and program announcement.

This report was then composed by the IWTEgX system, which is set up and
executed called as a batch command, latex.

This report was then printed by calling the batch command dvi, which
converts the device-independent output of TEX into the typeset form that you
are reading now.

92-12

127

C (Cogjoin FUNCTIONAL STRUCTURE

C.1

Call Tree

The following listing denotes the invoked function structure of Coxfoin in depth-
first order. Multiple branches of the same subtree are not shown. Function
names followed by ‘?’ are external to Conjoin, and are either in the standard
ANSI library or the TOP-C library. Although not functions, some defined
terms, such as NIL, NOT, AND, and other spurious entries may appear in the
listing because of a flaw in the Microsoft calltree utility used to generate the

tree.

NIL

FGETSIZE

strdup
strtrim
fgets
main

—— o —— o —) St i o . —— —— — — — — —— ——— . = ————

initialization

command_line
| strler?
sprintf?
strlen?
strcpy?
strcat?
announce

| printf?
usage

| printf?
eITOr _message

printf?
fprintf?

file_defaults

N0T?
strchr?

| strcat?
| strtcpy?
strcmp?
strcpy?
strchr?
fopen?
FGETSIZE...
fclose?

pen_io_files

file_open
| ¥0T?
fopen?
| strcpy?
| strncat?
| strcat?
| strerror?
|
b4

error_message. . .

open?

- OBTERTHNATY?

2 ENE

PREGEDING PAGE BLANK NOT FILMED

|
|
|
|
|
|
|
|
|
{
|
c

|
|
|
]
|
1
!
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
I
|
|
!
|
|
|
|
|
I
i
|
|
|

fclose?
strchr?
strcpy?
Tomove?
rename?

imestamp

strlen?
strnset?
time?
localtime?
stratrim?
strcpy?
asctime?
right_fill

| strnset?
| strlen?
fprintf?

onJoin_files

fgets. ..

strinb?

fprintf?

strstr?

strcpy?

directive

| strcpy?

| strstr?

I strext

It aED?

|] strstr?

I 1 strtcpy?

| | strepy?

| [stratrim?

| strlen?

| atoi?

| strnset?

| strfnb?

| strdup...

| strlur?

| stratrim?

| strcmp?

| error_message. ..

| sprintf?

| strinsert?

| AND?

| strcat?

access

strext...

match_parameters
§0T?
strstr?
strcpy?

stratrim?
strtcpy?
strinb?

|
|
|
i eXTOY _MeSSage. ..
|
|
|

92-12

strlen?

AND?
access_condition
| stratrim?
strstr?
atoi?
strlen?
strchr?
OR?
isdigit?
strdup. ..
strtrim. ..
strfnb?

BOT?
open_access

strcpy?
¥0T?
fopen?
strcat?

|

I

|

I

|

|

|

I

|

I

|

1

|

|

|

|

[

|

!

| error_message...

| printf?

| fprintf?

| scan_to_bgn_match
| | fgetpos?

| fgets. ..

] strstr?

| fsetpos?

| error_message. ..
| opy_to_end_match
| fgetstr

I | ®OT?

I | fgets...

| | isspace?
| | ORisprint?
| | strcat?

l | strtrim...
| ¥0T?

I strdup...

| 6rTOT_message. ..
| free?

| putline

| | AND?

| | strchr?

| | min?

I | fprintf?
1 | strstr?

| free?

| fclose?

|
|
|
i
[
|
|
|
|
|
|
!
|
i
|
|
|
|
!
]
|

access_lines?

130 92-12

C.2 Reference List

The following list displays the invoked-by structure of functions within the
Corfoin program. As in the previous section of this appendix, NIL appears
at the whim of the reference-tree-producing tool.

ConJoin_files:
FGETSIZE:

FIL:

access:

access_condition:

main

initialization

ConJoin_files

match_parameters

announce: initialization
command_line: initialization
copy.to_end _match: access

directive: ConJoin_files
eITOr _NMessage: ACCEss copy.to_end _match directive
file_open initialization match_parameters
scan_to_bgn_match
fgets: ConJoin_files fgetatr scan_to_bgn_match
7 fgetstr: copy_to_end _match

B

file_defaults:
file_open:
initialization:
main:
match_parameters:
Open_access:
open_io_files:
putline:
right_£ill:
scan_to_bgn_match:
strdup:

strext:

initialization
open_io_files

main

access

access

main

copy_fo_‘nd_latch

timestamp

access

access_condition copy_to_end_match directive

access directive

92-12

strtrim: access_condition fgetstr

timestamp: main

usage: initialization

131

92-12 133

D REFERENCES

[1] Spear, Barbara, How to Document Your Software, TAB Books, Inc., Blue
Ridge Summit, PA, 1984.

[2] Jung, Karl, Psychological Types, London Press, 1923.

[3] Martin, James, and McClure, Carma, Diagramming Techniques for Ana-
lysts and Programmers, Prentice-Hall, Inc, Englewood Cliffs, NJ, 1985.

[4] Lamport, Leslie, BTgX: A Document Preparation System User’s Guide and
Reference Manual, Addison-Wesley Publishing Company, Reading, MA,
1986.

[5] Press, William H., et al., Numerical Recipes, Cambridge University Press,
Cambridge, England, 1986.

[6] Goldfarb, C. F., The SGML Handbook, Oxford University Press, 1990.

[7] Hypermedia/Time-based Document Structuring Language ISO/IEC Draft
International Standard 10744, International Organization for Standardiza-
tion and International Electrotechnical Commission.

[8] Newcomb, S. R., et al., “The HyTime Hypermedia/Time-Based Document
Structuring Language,” Communications of the ACM, Vol. 34, No. 11,
November 1991, pp. 67-83.

[9] International Standard 8879, “Information processing—Text and office
systems—Standard Generalized Markup Language (SGML),” International
Orgainization for Standards, Reference No. 8879-1986 (E).

[10] Haan, Bernard J., et al., “IRIS Hypermedia Services,” Communications of
the ACM, Vol. 35, No. 1, January 1992, pp. 36-51.

[11] Knuth, Donald E., “The WEB system of structured documentation,” Com-
puter Science Report 980, Stanford University, Palo Alto, CA, September
1983.

[12] Knuth, Donald E., The TgXbook, Addison-Wesley Publishing Company,
Reading, MA, 1984.

[13] Knuth, Donald E., “Literate Programming,” The Computer Journal, Vol.
27, No. 2, May, 1984, pp. 97-111.

[14] Cordes, David, and Brown, Marcus, “The Literate Programming Para-
digm,” IEEE Computer, Vol. 24, No. 6, June, 1991, pp. 52-62.

PREGEDING PAGE BLANK NOT FILMED

134 92-12

[15] Hyman, Marco C., “Literate C++” Computer Language, Vol. 7, No. 7, June
1991, pp. 67-79.

[16] Levy, S., “WEB Adapted to C—Another Approach,” TUGboeat, Vol. 8, No.
1, April, 1987, pp. 12-14.

[17] Thimbleby, Harold, “Experiences in ‘literate programming’ using CWEB,”
The Computer Journal, Vol. 29, 1986, pp. 201-211.

[18] Sewell, Wayne, Weaving a Program: Literate Programming in WEB, Van
Nostrand Reinhold, New York, 1989.

[19] Webster’s Ninth New Collegiate Dictionary, Merriam-Webster Inc., Spring-
field, MA, 1983.

[20] Tausworthe, Robert C., “A General Software Reliability Process Simula-
tion Technique,” Publication 91-7, Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA, April 1, 1991.

(21] Meyer, John, YEROX Ventura Publisher Edition Reference Guide, Xerox
Corp., 1987.

[22] Elsayed, E. A., Taguchi, G, and Tsiaﬁg, T., Quality Engineering in Pro-’

duction Systems, McGraw-Hill Book Co., NY, 1988.

[23] Plum, Thomas, C Programming Standards and Guidelines, Plum Hall Inc,,
Cardiff, NJ, 1982.

[24] Thomas, Edward J., et al., “A Bibliography of Programming Style,” SIG-
PLAN Notices, Vol. 25, No. 2, 1990, pp. 7-16.

[25] Tausworthe, Robert C., Standardized Development of Compuler Software,
Volume 1: Methods, Volume 2: Standards, Prentice-Hall Inc., Englewood
Cliffs, NJ, 1977 and 1979.

[26] Kernighan, Brian W., and Ritchie, Dennis M., The C Programming Lan-
guage, Prentice-Hall Inc., Englewood Cliffs, NJ, 1978.

[27] American National Standard for Information Systems— Programming Lan-
guage C, X3.159-1989, Draft X3J11/88-158, American National Standards
Institute, December 7, 1988.

»

T TECHNICAL REPORT STANbARD TITLE PAGE

1. Report No. 2. Government Accession No. | 3. Recipient’s Catalog No.

92-12

4, Title and Subtitle . 5. Report Date
Conjunctive Programming-—-An IntegratH

[ve Approach to Software System Synthesis

Augustl, 1992

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Robert C. Tausworthe
9. Performing Organization Name and Address 0. Work Unit No.
JET PROPULSION LABORATORY
California Institute of Technology 11. Contract or Grant No.
4800 Oak Grove Drive NAS7-918
Pasadena, California 91109 13. Type of Report and Period Covered

JPL Publication

12, Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

X 14, Sponsoring Agency Code
Washington, D.C. 20546 BK-506-59-11-01-00 (%ask: RE156)

15, Supplementary Notes

16. Abstract

This report introduces a technique of software documentation
called conjunctive programming and discusses its role in the devel-
opment and maintenance of software systems. The report also de-
scribes the Congoin tool, an adjunct to assist practitioners. Aimed at
supporting software reuse while conforming with conventional devel-
opment practices, conjunctive programming is defined as the extrac-
tion, integration, and embellishment of pertinent information ob-
tained directly from an existing database of software artifacts, such
as specifications, source code, configuration data, link-edit scripts,
utility files, and other relevant information, into a product that
achieves desired levels of detail, content, and production quality.
Conjunctive programs typically include automatically generated ta-
bles of contents, indexes, cross references, bibliographic citations, ta-
bles, and figures (including graphics and illustrations). This report
presents an example of conjunctive programming by documenting
the use and implementation of the Confoin program.

17. Key Words (Selected by Author(s)) 18. Distribution Statement
Documentation and Information Technology
Mathematical and Computer Sciences Unlimited--Unclassified
Computer Programming and Software

19. Security Classif. (of this report) 20, Security Classif, (of this page) 21. No. of Pages | 22. Price
Unclassified Unclassified 134

JPL 01B4 R 983

